
Automatic Refactoring for Energy Efficiency in Continuous
Integration Pipelines

Ricardo José Horta Morais

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Rui Filipe Lima Maranhão de Abreu

Examination Committee

Chairperson: Prof. Alberto Manuel Rodrigues da Silva
Supervisor: Prof. Rui Filipe Lima Maranhão de Abreu

Member of the Committee: Prof. Pedro Manuel Guerra e Silva Reis dos Santos

September 2020

Acknowledgments

Many things are hard to achieve without the support of others, and they should be recognized for

their part, this dissertation was only possible through the support of others, in particular the continuous

support that I have been consistently given by my friends, family and mentors.

First, I would like to thank my family for supporting me, not only during my dissertation, but also

through all the years of my education, without their support I would not have been able to reached this

point.

I would also like to thank my friends, in particular Otelo Magalhães and Artur Esteves for being there

when I needed them the most.

I am also grateful for the help of both the JavaParser and Spoon support teams in particular Martin

Monperrus whose help was of the most importance.

All the participants of the survey should also be acknowledged in particular those that were not

anonymous: João Morais, Artur Esteves, Márcio Pamplona and Filipe Correia. A special thanks to João

Morais for helping me review the final submission of this dissertation.

Finally, I want to acknowledge my dissertation supervisors Prof. Rui Maranhão and Prof. Luı́s Cruz

for their continuous support, patience and knowledge that has made this dissertation possible.

Abstract

Contemporary society demands more than is currently possible for battery technology on mobile devices.

Developers should meet this necessity by designing mobile applications that take energy efficiency into

account.

Energy-conscious practices have yet to proliferate in the mobile development community and are

often left behind because developers do not know how to apply them and why they are important, for

instance bad energy efficiency in applications tend to lead to bad application reviews and consequently

less sales. Moreover, developers are not equipped with tools that help in that regard.

In this work I introduce LeafactorCI, a software solution that assists developers by automatically

refactoring energy inefficient anti-patterns on android projects, allowing them to focus on creative work.

LeafactorCI stands out because it was designed to be lightweight, adaptable, and simple, to be easily

introduced to continuous integration environments. LeafactorCI is evaluated on the GitHub platform with

the TravisCI integration which are the most popular Version Control System platform and CI service,

respectively.

Keywords

Green mining, mobile, energy efficiency, automated refactoring, continuous integration, anti-patterns.

iii

Resumo

A sociedade contemporânea exige mais do que é atualmente possı́vel da tecnologia de bateria em dis-

positivos móveis. Os programadores devem atender a essa necessidade projetando aplicativos móveis

que levem em consideração a eficiência energética.

As práticas conscientes de energia ainda estão por proliferar na comunidade de desenvolvimento

móvel e geralmente são deixadas para trás porque os programadores não sabem como aplicá-las e/ou

por que são importantes, por exemplo, a má eficiência energética em aplicativos tende a levar a crı́ticas

menos agradáveis a aplicativos e, consequentemente, a menos vendas. Além disso, os programadores

não estão equipados com ferramentas que ajudam nesse sentido.

Neste trabalho, apresento o LeafactorCI, uma solução que ajuda os programadores a refatorar au-

tomaticamente antipadrões de energia em projetos Android, permitindo que eles se concentrem em

trabalho criativo. O LeafactorCI destaca-se pelo fato de ter sido projetado para ser leve, adaptável, sim-

ples e para ser facilmente introduzido em ambientes de integração contı́nua. O LeafactorCI é avaliado

na plataforma GitHub com a integração do TravisCI, que são as plataformas mais populares de sistema

de controle de versão e de serviço de integração contı́nua, respectivamente.

Palavras Chave

Continuous Integration, Energy bugs, Energy efficiency, Anti-patterns, GIT, Gradle, Spoon, Android,

Java

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objective . 3

1.3 Contributions . 4

1.4 Dissertation structure . 4

2 Related Work 5

2.1 Energy Profiling . 7

2.2 Patterns . 9

2.3 Automated Refactoring . 13

2.4 Continuous Integration . 15

3 Architecture and implementation of LeafactorCI 19

3.1 Overview . 21

3.2 Refactoring . 22

3.2.1 General requirements for the refactoring library . 22

3.2.2 Specific requirements for the refactoring library . 23

3.2.3 JavaParser . 23

3.2.4 Analysing the requirements . 23

3.2.5 Spoon . 24

3.2.6 Analysing the requirements . 25

3.3 Version Control . 26

3.4 Distribution and usage . 26

3.5 Continuous Integration . 27

3.6 Refactoring Rule . 28

3.6.1 RecycleRefactoringRule.java . 30

3.6.2 DrawAllocationRefactoringRule.java . 32

3.6.3 WakeLockRefactoringRule.java . 33

3.6.4 ViewHolderRefactoringRule.java . 34

vii

3.6.5 Gradle Plugin . 35

3.7 Testing . 36

3.8 Continuous Integration . 37

4 Evaluation 38

4.1 User study . 39

4.2 Can LeafactorCI be used inside a Continuous Integration (CI) environment? 43

4.3 How easy it is to adopt LeafactorCI? . 44

4.4 Performance . 46

5 Conclusion 47

5.1 Motivation . 49

5.2 Contributions . 49

5.3 System Limitations and Future Work . 50

A Project Code 56

viii

List of Figures

2.1 Classification introduced by Ahmad et al. in 2015 [7] . 12

2.2 Distribution of code-smells in desktop and android applications taken from [28] 12

2.3 Sample code taken from [22]. 14

2.4 TGraph representation taken from [22]. 14

2.5 Distribution of projects between the testing tools taken from [14]. 16

3.1 Architecture . 21

3.2 Refactoring rules Unified Modeling Language (UML) diagram 29

4.1 Distribution of the participant roles. 39

4.2 Distribution of participants that worked on Android app previously. 40

4.3 Distribution of participant’s willingness for hearing more about the anti-patterns. 40

4.4 Distribution of participant’s willingness for hearing more about the LeafactorCI. 41

4.5 Distribution of participant’s willingness for trying LeafactorCI. 42

4.6 Distribution of participant’s ability in installing LeafactorCI. 42

4.7 Distribution of participant’s difficulty in installing LeafactorCI. 43

4.8 Distribution of participant’s necessity for troubleshooting during the LeafactorCI installation. 44

4.9 Distribution of participant’s ability for executing LeafactorCI. 45

ix

Listings

3.1 The CI sample script . 37

A.1 The Iterable interface . 56

A.2 The Refactor class . 57

A.3 The DrawAllocationRefactoringRule class . 58

A.4 The RecycleRefactoringRule class . 60

A.5 The ViewHolderRefactoringRule class . 64

A.6 The WakeLockRefactoringRule class . 69

x

Acronyms

CI Continuous Integration

FAQ Frequently Asked Questions

DBMS Database Management System

GPS Global Positioning System

UI User Interface

CPU Central Processing Unit

ORM Object-Relational Mapping

AMOLED Active-Matrix Organic Light Emitting Diode

LCD Liquid Crystal Display

XML Extensible Markup Language

JDT Java Development Tool

IDE Integrated Development Environment

AST Abstract Syntax Tree

GUI Graphical User Interface

LGPL Lesser General Public License

MIT Massachusetts Institute of Technology

CeCILL-C CEA CNRS INRIA Logiciel Libre

VCS Version Control System

CLI Command Line Interface

API Application Programming Interface

UML Unified Modeling Language

SDK Software Development Kit

xi

1
Introduction

Contents

1.1 Motivation . 3

1.2 Objective . 3

1.3 Contributions . 4

1.4 Dissertation structure . 4

1

2

1.1 Motivation

In recent years, there has been an increase in efforts by the scientific community to improve the energy

efficiency of mobile devices through the improvement of the Application-level [8, 10, 11]. In particular,

Cruz and Abreu studied the impact of fixing eight Android performance-related anti-patterns on energy

efficiency [10] and concluded that there are five anti-patterns, that do positively influence energy effi-

ciency, specifically: ViewHolder, DrawAllocation, WakeLock, ObsoleteLayoutParam, and Recycle. By

exploring this fact, in a later study, Cruz and Abreu introduced Leafactor [11, 15], a refactoring utility that

automatically cleanses android projects of four of those anti-patterns.

Because Android developers are in need of an answer to their energy bugs that considers their

development practices [11, 25], this dissertation introduces Leafactor as an open-source continuous

integration solution that helps them to easily purge energy-efficient anti-patterns in their source code.

Unlike other solutions, this dissertation focus on automation and adaptability by releasing a new imple-

mentation of Leafactor, called LeafactorCI, published as a Gradle plugin powered by Spoon. The fact

that most Continuous Integration (CI) services provide Docker containerization technology means that

the execution of Gradle tasks is widely supported. Most Android applications are built on top of Gradle.

A significant number of benefits can be obtained from adopting CI [14, 24, 38, 40]. Vasilescu et al.

assessed the effects of continuous integration by gathering data from GitHub [38]. They collected 247

GitHub projects that at some point introduced CI and found that after CI was added, more Pull-Requests

from the core developers were accepted, and fewer rejected. In addition, fewer submissions from non-

core developers got rejected, suggesting that CI both improves the handling of Pull-Request from in-

siders as well as outsiders. On the other hand, they found that CI did not decreased user-reported

bugs. However, there was a decrease of developer-reported bugs, which suggests that CI is helping

developers in that regard.

1.2 Objective

Developers lack tools to properly enhance the energy consumption footprint of their mobile apps and

most online resources are oriented on how to improve app performance, which not always translates to

improving energy efficiency [25]. To solve this problem, it is proposed a solution that helps them clear

energy bugs in android applications and relieve them of energy efficiency concerns. The adaptation to

CI practices was also considered as there is a growing number of developers turning to CI [14]. This

dissertation objectives will be accomplished by:

• Introducing LeafactorCI, a Gradle based plugin with a smaller footprint and better performance

than its predecessor (Leafactor) by re-implementing the refactoring rules using a slimmer and

3

faster technology.

• Improving usability by providing LeafactorCI as a Gradle plugin, enabling its integration with An-

droid projects and to adapt to several CI scenarios, enhancing its chances to proliferate inside the

developer community.

• Suggesting a strategy for delegating refactoring decisions to the developer through the automatic

creation of branches containing the fixes, such that they can be merged after manual acceptance.

• Creating a test battery in order to establish the baseline of support and avoid future regressions.

• Documenting the tool and publishing it in an alpha version.

• Evaluating the final solution by answering the following questions by either conducting a user study

on a set of volunteers or through analysis and demonstration:

– Can LeafactorCI be used inside a CI environment?

– How easy it is to adopt LeafactorCI?

1.3 Contributions

The product of this dissertation is LeafactorCI, a tool to refactor four types of energy bugs (Wake Lock,

View Holder, Recycle, and Draw Allocation) that can form in the code of Android Java projects. With

LeafactorCI, developers are able to check if these energy bugs are present in their code, and if they

are, they are able to fix them automatically. For an even more automatic experience, LeafactorCI

was designed to be used inside a CI environment. This dissertation suggests a strategy to boot-

strap an automatic refactoring process. LeafactorCI comes out as an open-source project at https:

//github.com/TQRG/leafactor-ci and is launched in its alpha version at https://plugins.gradle.

org/plugin/tqrg.leafactor.ci. Developers are welcome to contribute to the project and/or use it as

a base to conduct further research on other energy bugs.

1.4 Dissertation structure

The rest of this document is organized as follows: The chapter 2 explores the related work; Chapter

3 presents the design and implementation of the solution to the problems exposed in the related work;

Chapter 4 is dedicated to the evaluation of the resulting solution; Chapter 5 concludes with final remarks.

And finally appendix A presents part of the code of the solution.

4

https://github.com/TQRG/leafactor-ci
https://github.com/TQRG/leafactor-ci
https://plugins.gradle.org/plugin/tqrg.leafactor.ci
https://plugins.gradle.org/plugin/tqrg.leafactor.ci

2
Related Work

Contents

2.1 Energy Profiling . 7

2.2 Patterns . 9

2.3 Automated Refactoring . 13

2.4 Continuous Integration . 15

5

6

This section presents the state of the art and reflects on the investigation behind the design and

implementation decisions for this work. This section is divided into four distinct sub-sections, each

represents a conceptional step, from the fundamental to the supplementary, it is divided in the following

way: the Section 2.1 describes the two most prevalent profiling methods used in mobile green mining1

studies; the Section 2.2 evaluates studies that explore the intricacies of patterns in the source-code of

mobile applications and how some of those patterns influence energy efficiency; Section 2.3 features

studies that propose tools and methods to automatically refactor out the previously mentioned anti-

patterns; and finally Section 2.4 illustrates how CI is positively disrupting how software solutions are

developed and lays a motivational foundation for supporting the CI ecosystem.

2.1 Energy Profiling

Studies on mobile green mining rely on different means of profiling the battery consumption. Usually

either one of two methods are used: direct hardware measurement; or energy consumption estimation.

Each leads to different results. On one hand, direct hardware measurement provides higher certainty in

energy consumption as the sensors measurement is very accurate (provided that the probing arrange-

ment is reliable), this method, however, is more expensive, lacks flexibility and practicality due to the

set up complexity. On the other hand, despite estimating energy consumption being simpler and less

expensive, it will most likely not produce such accurate results, as the models cannot portray every detail

of reality.

In this section, a simplified version of Linares-Vásquez et al. [27] approach to classifying energy

profiling methods was used along with the following dimensions:

• Apps - number of applications used in the evaluation of the proposed technique;

• Approach - approach used for collecting and estimating energy measurements:

– Hardware-based profiling (HBP) - physical measurement

– Power models (PM) - modeling the factors that come into play in energy consumption

– Android Battery API (ABA) - Android provides an API to access data taken from the embedded

sensors in the device

• Profiling granularity - the artifacts that are considered and utilized in the profiling effort

– Application (A)

– Flow Path (FP) - determine application paths traversed and track energy-related information

during an execution
1Methodology of reducing energy costs by optimizing the underlying system

7

Technique Apps Approach Element Tool Year

Sahin et al. [35] - HBP P H 2012
Pathak et al. [32] 21 PM S,A,F,APIC EP 2012

Li and Halfond [25] 6 PM FP,F,S,A VL 2013
Linares-Vásquez et al. [27] 55 HBP APIC M,H 2014

Li et al. [26] 400 PM APIC,F,S,A VL,M,PT 2014
Cruz and Abreu [10] 6 HBP S,P H 2017

Table 2.1: Paper classification

– Function (F)

– API Calls (APIC) - the call made to the Android SDK

– Statement (S)

– Patterns (P)

• Tool - the tool that were used for acquiring the data

– vLens (VL)

– PowerTutor (PT)

– eCalc (EC)

– eProf (EP)

– Monsoon power monitor (M)

– Hardware (H)

Ahmad et al. also classified the state-of-the-art of energy profiling back in 2015. In their work they

organized the studies into two energy profiling schemes, Software Based Profiling and Hardware Based

Profiling. Figure 2.1 shows how they classified the studies. We, however, use Linares-Vásquez et al.

approach because it is simpler, and contains the relevant details.

This work is a follow up of the study done by Cruz and Abreu. Nevertheless it is important to compare

it with similar studies. A small set of relevant and diverse papers from 2012 and above were selected,

their methods were analysed and classified. The classification can be seen in Table 2.1. The most

similar study to [10] (Cruz and Abreu) can be seen in the table to be [27] (Linares-Vásquez et al.) with 3

years apart. They both used Hardware based profiling but evaluated different artifacts, Linares-Vásquez

et al. evaluated API calls, and Cruz and Abreu evaluated patterns and statements. Linares-Vásquez

et al. considered a vast range of application, 55 to be exact, while Cruz and Abreu considered six.

One example of energy consumption estimation can be shown in [25] where Li and Halfond con-

ducted a small-scale empirical evaluation of commonly suggested energy-saving and performance-

enhancing coding practices. Through the use of energy consumption estimation, they concluded that

8

techniques like bundling network packets up to a certain size and using certain coding practices for

reading array length information, accessing class fields, and performing invocations all led to reduced

energy consumption. In another empirical study [26] on energy consumption of android applications

based on power consumption estimation, Li et al. found that apps spend more than 60% of their energy

in idle states and that network is the most energy consuming component, therefore they postulate that

optimizing the Application-level alone is not enough. However, a number of studies [9, 10, 35] have

demonstrated that there is in fact space for improvement in the Application-level and that any improve-

ment, even if small, is relevant.

In [10], Cruz and Abreu emphasized the particularities of energy profiling and reviewed empirical

studies that based their findings on data obtained from tools such as PowerTutor [21], eProf [17], and

eCalc [23]. In the same study Cruz and Abreu use a hardware power measuring device to evaluate

their work which they introduced in another study [12], justifying that estimation software is usually

only compatible with specific smartphone models and Android versions, making evaluation very difficult.

Further, they showed that it is possible to improve energy efficiency by up to 5% just by making changes

to the Application-level which can equate to a significant quantity of battery life minutes saved.

Linares-Vásquez et al. hinted for a trade-off between design principles and battery saving [27], in

particular they expose ”information hiding” as an expensive principle and advice to disregard it by giving

direct assess to private fields. They also highlight that using a Database Management System (DBMS)

may have a non-negligible impact on the battery consumption [27], and it should be avoided unless

strictly necessary.

Pathak et al. point out that some of the energy is consumed by asynchronous mechanisms such as

GPS, Wi-Fi, camera, etc. which make it difficult to trace-back energy consumption [32]. They published

and used eProf a fine-grain energy profiling tool that can overcome that obstacle. eProf can be used in

conjunction with static analysis techniques to develop energy optimizers that automate the process of

restructuring app source code to reduce their energy footprint [32].

From what we can gather, even thought those studies use different profiling approaches, all of them

point out that there is room for improvement. This work is based on the work done by Cruz and Abreu

in [10] which used Hardware Based Profiling to show how specific patterns in the code influence energy

consumption. The next section explores how patterns can have an effect on energy consumption.

2.2 Patterns

Classic design patterns, like those identified in the book released by the Gang of Four[18]2, fail to influ-

ence energy consumption when introduced in the design phase [35], i.e. it is not enough to simply adopt

2The authors of the book Design Patterns: Elements of Reusable Object-Oriented Software (1994) that describe 23 classic
object-oriented software design patterns

9

one or more design patterns in the design phase to improve energy efficiency e.g. Java applications of-

ten apply the Model-View-Controller design pattern, which seems to be less energy efficient compared

to other forms of organizing the code [27]. Consequently, developers seeking to improve the energy

footprint of their mobile applications have to consistently pay attention to bad development practices.

Recently a number of studies have been demonstrating that there is a correlation between code

smells3 and energy efficiency [8, 29] and subsequently exploring this fact, for instance Banerjee and

Roychoudhury in [8] used an approach where a design-expression is extracted from a given applica-

tion. This design-expression represents the application‘s event graph abstraction. Where there is a non

empty intersection between the design-expression and a defect-expression (an expression that repre-

sents undesired anti-patterns), a refactoring is done in order to undo the intersection. In [29], Morales

et al. led a preliminary study that evaluated if anti-patterns influence energy consumption, additionally if

different types of anti-patterns(object-oriented and android specific anti-patterns) influence energy con-

sumption differently and concluded that removing ”Binding resources too early”, ”Private getters” and

setters, ”Refused Bequest”, and ”Lazy class” anti-patterns can improve energy efficiency.

In previous work, Cruz and Abreu compiled a guideline for fixing a set of five patterns which form on

Android projects and impact energy efficiency. They are:

• View Holder - This pattern appears in List Views. When in a List View, the system has to draw

each item and the problem arises when the method findViewById is called a number of times, this

method is known for being a very expensive method.

• Draw Allocation - Allocating objects during a drawing or layout operation is a bad practice. Al-

locating objects can cause garbage collection operations that will slow down the operation and

create a nonsmooth User Interface (UI).

• Wake Lock - Wake locks are mechanisms to control the power state of the mobile device. This

can be used to wake up the screen or the Central Processing Unit (CPU) when the device is in a

sleep state in order to perform tasks. If an application fails to release a wake lock or uses it without

being strictly necessary, it can drain the battery.

• Obsolete Layout Param - During development, UI views might be refactored several times. In this

process, some parameters might be left unchanged even when they have no effect on the view.

This causes useless attribute processing at runtime leading to battery consumption.

• Recycle - There are collections such as TypedArray that are implemented using singleton re-

sources. The problem occurs when the resource is not released properly, leading to inefficient

resource management.

3A term popularized by Martin Fowler that designates code patterns that can be found in software that indicate weaknesses in
design that may slow down development or increase the risk of bugs or failures in the future

10

A large scale study by Cruz and Abreu on energy practices of mobile applications [16] inspects 1027

Android project and their respective commits, pull request, and issues to find energy-related changes.

Cruz and Abreu delivered a catalog of 22 design patterns to improve energy efficiency. Their work

exposes 22 energy-related practices. This study, however, provides no evidence for the benefits of using

them.

Verdecchia et al. in a recent study evaluated the energy impact of five code-smells on three Open

Source Java Object-Relational Mapping (ORM) based applications [39]. The code-smells were:

• Feature Envy - A method that is placed in the wrong class because it invokes other classes more

than its own class, which leads to low cohesion.

• Type Checking - Control flow mechanisms such as ’if’ and ’switch’ statements that check the type

of the variables at runtime instead of using compile time mechanisms.

• Long Method - A method too large that could be divided into smaller ones in order to improve

maintainability.

• God Class - A class that controls and centralizes a great part of the architecture leading to main-

tainability inconvenience.

• Duplicated Code - The same code structure appears in different parts of the code.

Verdecchia et al. showed that all of the above mentioned code-smells, when fixed lead to improvements

in energy efficiency of at least one (out of the three) of the sample applications, in particular ”Feature

Envy” and ”Long Method” provided the best results. While fixing ”God Class” and ”Duplicated Code” did

show improvements in the energy efficiency, the fix also impacted performance negatively, which means

that there seems to be a trade-off in those two cases. They also noticed that the impact of fixing those

code smells depends on multiple factors like the size and the age of the application.

Mannan et al. analysed 20 code-smells, 500 Android and 750 desktop applications and found that

there seems to be more code-smells on android applications than desktop applications like shown in

Figure 2.2.

The distribution clearly shows that there is a high number of code smells such as the Feature Envy

and God Class that Verdecchia et al. shown to improve energy efficiency.

Gottschalk in his thesis [22] described and evaluated five energy bugs thoroughly:

• Third-Party Advertisement - where advertisements are used in applications that do not require

internet connection.

• Binding Resources too Early (BRTE) - where resources such as Wi-Fi and Global Positioning

System (GPS) are turned on way before they are needed. (This pattern is also explored in [10] by

Cruz and Abreu).

11

Figure 2.1: Classification introduced by Ahmad et al. in 2015 [7]

Figure 2.2: Distribution of code-smells in desktop and android applications taken from [28]

12

• Statement Change - where an ’if’ statement can be changed to a ’switch’ statement or vice-

versa(similar to the Type Checking code-smell mentioned earlier) when it improves readability.

• Backlight - where the background color of the application may have an effect on the energy ef-

ficiency on different screen technologies such as Liquid Crystal Display (LCD) and Active-Matrix

Organic Light Emitting Diode (AMOLED).

• Data Transfer - where data is loaded from the server instead of the application storage.

Palomba et al. used a lightweight tool called aDoctor to identify 15 Android-specific code smells [31]

from the 2014 Reimann et al. catalogue [33] founded on the traditional code-smells from ? book [?],

however they did not study the energy impact of those code smells. Much like Leafactor, this study used

a similar approach to detecting anti-patterns in the code, they used static analysis of Android projects.

We have seen in this section that patterns can be identified in the code of applications that worsen

the consumption of energy. The next section will take a look at how automated refactoring can be used

to cleanse those patterns.

2.3 Automated Refactoring

Refactoring techniques can be used to improve software design by altering its structure without changing

its functionality [20]. Refactoring focus on the nonfunctional attributes of software, therefore, it can be

used to improve the energy efficiency of mobile applications.

Cruz et al. used the technique to fix anti-patterns in the source-code of mobile applications. In earlier

work [11], Cruz and Abreu showcased Leafactor, a toolset designed to automatically purge five android

specific anti-patterns that negatively affect energy consumption. Leafactor is divided into two engines,

one is a Java refactoring engine based on the open-source project AutoRefactor [34] and the other is

an Extensible Markup Language (XML) refactoring engine made from scratch to deal with layout related

anti-patterns, at the time the latter only takes care of the dead code. Because most of Leafactor was

implemented on top of AutoRefactor, which depends on the Eclipse Java Development Tool (JDT) library

which makes it, therefore, bound to either be used as an Eclipse Integrated Development Environment

(IDE) plugin or as a headless4 plugin. This is a disadvantage as it restricts its domain and therefore its

usefulness.

There are essentially two ways to go about source-code analysis, static analysis and dynamic anal-

ysis. In static analysis the source code of the application is analysed usually with a model such as an

Abstract Syntax Tree (AST) of it which disregards the actual execution of the application, from there

the model is analysed and conclusions are made [22]. In dynamic analysis the application execution is
4Headless plugins run in what is known as the headless mode of Eclipse. This mode does not start the graphical interface,

hence it is faster and uses less memory. This mode is ideal for interfacing with other tools that are not part of Eclipse.

13

Figure 2.3: Sample code taken from [22].

Figure 2.4: TGraph representation taken from [22].

considered which allows for the extrapolation of usage data [22]. Cruz and Abreu use static analysis to

identify the patterns in the code.

Gottschalk implemented a refactoring tool called EnergyRefactoring [22] in 2013. It uses a form of

static analysis, something called the TGraph which is generated from the original application to create a

tree-like representation of the code, then with a query language called GReQL5 a query is made to iden-

tify the specific pattern and finally with JGraLab API6 and the result of the query a transformation is made

to remove the pattern. Figure 2.3 is an example of code taken from [22] and Figure 2.4 demonstrates its

representation in TGraphs.

Morales et al. published a refactoring approach titled EARMO [29]. This approach balances between

two conflicting objectives: design quality; and energy efficiency. They claim that this approach enabled

them to achieve a remarkable extension in battery life. Unlike Cruz et al. that selected a set of anti-

patterns that affect energy efficiency negatively, Morales et al. focused on multi-objective optimization,

where the main goal is to improve the quality of the code while controlling the energy efficiency. This

approach takes into account all sorts of code-smells(object-oriented code-smells as well as mobile spe-

cific code smells), but in particular code-smells that do affect energy consumption, and for a very simple

5https://bit.ly/2FMdN9Q
6https://bit.ly/2CwOxBk

14

reason: refactoring such code-smells could lead to worse energy efficiency. While this approach seems

to be promising, it has yet to, as far as we know, materialize as a publicly available tool.

This section exposed some of the approaches currently being used to tackle this problem. This work

will use the static analysis approach for pattern identification and AST to represent the code structure

and apply the refactorings. AST’s are simple and well studied, they go hand in hand with static analysis

and there are a great number of tools available. The next section dwells into CI and explores how a tool

can be made such that it is adaptable to CI environments.

2.4 Continuous Integration

Martin Fowler defined Continuous Integration as “a software development practice where members of

a team integrate their work frequently, usually each person integrates at least daily - leading to multiple

integrations per day. Each integration is verified by an automated build (including test) to detect inte-

gration errors as quickly as possible. Many teams find that this approach leads to significantly reduced

integration problems and allows a team to develop cohesive software more rapidly” [19]. Following this

definition it can establish that this practice involves people contributing frequently with the expectation

of reaching a series of competitive advantages. Ståhl and Bosch studied process related differences

in CI practices [37], they advocate that CI is an umbrella for a variety of practices and that those prac-

tices should be taken into consideration as those may not represent CI as a whole. They analyzed the

literature and categorized the claims that were made and found that there are currently no consensus

on what CI is as a single homogeneous practice and that simply stating that a project is using CI is

often insufficient information. Hence, they present a model that exerts finer granularity which effectively

distinguishes CI practices from one another, the model helps to understand which of the practices better

relates to the goals. The most relevant question in the context of this project are:

1. Build duration - The build frequency needs to be considered. Is it three times a week, every day?

It matters.

2. Build triggering - The mechanism used to trigger a build should be explicit. Is it on commit, sched-

uled, manual, etc?

3. Integration frequency - How often developers integrated their work.

These points should be taken into considerations when adopting any CI tool in order for it to be used

effectively. For example, if a project is only built every 6 months it may not be worth investing in the

automation.

Testing is a fundamental part of continuous integration [14] as such it needs to be taken seriously.

Cruz et al. investigated the working habits and challenges of mobile app developers with respect to test-

15

Figure 2.5: Distribution of projects between the testing tools taken from [14].

ing [14]. They conduct a large-scale study on 1000 open-source android applications and concluded

that android apps are failing to use automated testing. The study showed only 40% of the applications

used testing technologies. Figure 2.5 shows the distribution of testing technologies on the 1000 ap-

plications. The testing technologies were: JUnit used in unit testing; and Espresso used in Graphical

User Interface (GUI) testing. Cloud testing services are not widely adopted, the most used technology is

Google Firebase. Cruz et al. also found that the most popular CI service is TravisCI. Cruz et al. explain

that it is important to simplify the learning curve and setup of such tools in order for them to be adopted.

Even though the status of testing and CI looks grim, there is a growing number of mobile developers

becoming aware of the importance of testing [14].

Zhao et al. led a large-scale empirical study using regression discontinuity design analysis to quan-

titatively evaluate the effects of adopting CI and how the developers are following Martin Fowlers advice

on applying continuous integration [40]. They found that after adopting CI:

• The number of commits starts to align with the ”commit often” principle, however this might be due

to the shift to a more distributed work-flow.

• The ’commit often’ was followed only to some extent and depended on the actual project.

• The number of issues closed increased but eventually slowed down

• After initial adjustments, the amount of automated tests seemed to increase.

16

In 2016, Hilton et al. published a study on the usage, cost and benefits of CI [24]. Hilton et al. iden-

tified that there was not enough research done in this area despite CI rising as a successful practice

and that, because of this, developers, tool builders, and researchers make decisions based on anec-

dotes instead of data. The study goes on to analyze 34,544 GitHub open-source projects, adding up

to 1,529,291 builds from the most commonly used CI system and survey 442 developers. 40% of the

projects evaluated used CI and they predict that the adoption rates will increase. They also discovered

that the median time of adoption is one year and the main reason why open-source projects choose

to not use CI is that the developers are not familiar enough with it. In this regard, providing means of

education, improving the ease of use and raising awareness can eventually reduce the time of adoption.

Although CI practices have their benefits, they can also be challenging to implement. As synthesized

by Shahin et al., there are several factors to consider [36] such as: testing(effort and time); team aware-

ness and transparency; good design principles; customer; highly skilled and motivated team; application

domain; appropriate infrastructure.

An organization should contemplate their current situation before assimilating CI into their stack.

Further, Shahin et al. compiled a set of practices that, when correctly applied, can lead to successful

incorporation of CI [36]:

• Improve team awareness and communication e.g. using a changelog, labeling versions and

features, etc;

• Planning and documenting e.g. having a planned path for adopting continuous integration and

document builds, tests and other activities related to the integration;

• Promote team mindset by organizing events about continuous practices to spread mindset and

giving freedom to developers;

• Improve team qualification and expertise through formal training and coaching team members;

• Define new roles and teams establishing a dedicated team to develop and maintain deployment

pipeline;

• Adopt new rules and policies e.g. enforcing a rule that all developers should be on call when

releasing software;

• Improve testing activity by practicing test-driven development, cross team testing etc;

• Branching strategies by using short-lived feature branching;

• Decompose development into smaller units by breaking down large features and changes into

smaller and safer ones;

17

Organizations and teams can exercise such practices with the support of CI services such as Circle

CI and Travis CI.

Taking the previous said into account, it is my desire to make my contribution in a continuous inte-

gration format as there seems to be a rising trend in the adoption of these practices. There is still a lack

of adoption of CI practices in mobile development, thus hopefully this project contributes to move the

needle forward in their adoption.

18

3
Architecture and implementation of

LeafactorCI

Contents

3.1 Overview . 21

3.2 Refactoring . 22

3.3 Version Control . 26

3.4 Distribution and usage . 26

3.5 Continuous Integration . 27

3.6 Refactoring Rule . 28

3.7 Testing . 36

3.8 Continuous Integration . 37

19

20

The previous chapter synthesized part of the literature surrounding the problem of improving mobile

energy efficiency problems. Based on this synthesis, we can assume that there may be anti-patterns in

the source code of android projects that when resolved can lead to a significant improvement on the en-

ergy efficiency of a particular application. Furthermore, such anti-patterns can be resolved through the

usage of refactoring tools. Such refactoring tools can also be streamlined using continuous integration

practices in order to improve the workflow of the development teams and maintain an automated resolu-

tion to energy inefficiency problems. In this section, it is detailed the approach taken in this work on the

development of LeafactorCI as an effective solution for purging anti-patterns in Android applications, as

well as its overall architecture.

3.1 Overview

Figure 3.1: Architecture

LeafactorCI is not just a software application, it is a software solution. As such it expands beyond

the realm of a single system. Its purpose is to solve a problem, to remove patterns in the source code

of Android applications, but in an elegant and easy manner, such that it becomes inconspicuous in the

development process.

The architecture aims at taking advantage of some of the existing practices for Android application

development. Such as the usage of the GIT version control system and the automatic usage of CI

platforms based on containerization technology.

21

The solution revolves around the Spoon refactoring engine. Spoon is the library that provides sup-

port for querying and refactoring the source-code of the Android applications. Using it, four refactoring

rules were implemented to refactor each of the Recycle, Draw Allocation, View Holder, and Wake Lock

patterns mentioned in the Section 2.2. This implementation is defined as the LeafactorCI Main Library.

In order to facilitate the integration of the tool with the Android environment, a Gradle plugin was cre-

ated (LeafactorCI Plugin) which allows for any Android project to integrate and use the LeafactorCI

Main Library. The plugin serves as an interface between the Gradle build tool and the Leafactor Main

Library. The LeafactorCI Plugin is also published in the Gradle Plugin Repository, which makes it

readily available for download. Now, since Gradle is used, it can be leveraged in a continuous integra-

tion environment, since a virtual container1 can be launched automatically on specific conditions such

as when a commit is made in the main branch of the Android application repository. Such a container

can be used to run a Gradle task that starts a refactoring on the code through the LeafactorCI Plugin.

Since GIT is used to clone the Android application to the container it is possible for the changes made

by the LeafactorCI Main Library to be committed back to a separate branch, leaving the developers

with the option to either merge or delete the branch.

3.2 Refactoring

While the concept of refactoring anti-patterns is simple, one must wonder how an actual implementation

will interact with the source code. The code of an Android Application is, put simply, a collection of Java

source files written to disk memory and therefore can be manipulated in many ways. A refactoring engine

that leverages the AST model was chosen to do the manipulation of such files. First, JavaParser[4] was

tried. It was not a good fit (due to reasons described in the subsequent subsections), therefore Spoon[5]

was used instead. The decision of which refactoring library to use took a few requirements into account.

3.2.1 General requirements for the refactoring library

When deciding on a library, a couple of general key points must be taken into consideration. These are

some of the points that were used to select the library:

• Maintenance - Is the library being maintained consistently?

• Community - Is the community active? Are they submitting new issues or questions? Are they

creating new features?

• History - Is this library new, has it been tested enough?

• Source Availability - Can the source code be modified and inspected?
1A trimmed out runnable layer of an operating system, used with technologies such as Docker and Vagrant.

22

3.2.2 Specific requirements for the refactoring library

For this distinct use case the library needs to meet additional requirements. The following points were

considered:

• AST model - Does it parse the source code as an AST model?

• Version support - Are they supporting the Java versions that are required to support? For Android

it needs to support Java 7 and 8 features.

• Library language - Is the library language widely adopted? Does it have a good ecosystem of

libraries?

• Low unintended alterations - After modifying the source code, does it look exactly like the original

with the exception of the modified parts?

• Efficiency - Does it run fast? Does it take too much time to parse and modify the code?

• Documentation - Is there documentation available? Is it good?

3.2.3 JavaParser

JavaParser is a Java library for analysing, transforming and generating Java source code from Java

version 1.0 to 14. It is open-source and hosted on GitHub under a Lesser General Public License (LGPL)

or Apache License. At present time it has 3,073 stars, 712 forks and 1,720 dependents. Currently it is

being maintained at a steady pace by a single contributor.

The library was first created in 2008 as a simple parser for the 1.5 version of Java. Over time, it

became a very popular choice and, at the present date, the latest Java version is 14. It was create by

Sreenivasa Viswanadha and Júlio Vilmar Gesser and hosted at Google Code[1]. From there Danny van

Bruggen migrated it to GitHub and has been maintaining it ever since. As he started to accept community

contributions the comunity and the library grew to what is is today. In 2016 the library JavaSymbolSolver

created by Federico Tomassetti in 2015 was added to JavaParser. Later he added a lexical preserving

parser that allowed the parser to preserve the style format of the code while parsing.

3.2.4 Analysing the requirements

JavaParser library was analysed with the previously mentioned points to see how it fits the necessary

requirements:

• Maintenance - The library is maintained at a steady pace. However, it was discovered that not all

of the source code is being maintained at the moment, only part of it.

23

• Community - There are new issues being submitted by users but it doesn’t seem that the commu-

nity is contributing to the source code.

• History - It was created in 2008 and been improving since then. Still, there are very recent features.

• Source Availability - The code is open-source under a LGPL or Apache License.

• Documentation - Good enough, there is free book about it. [30].

• AST model - It parses the source code to an AST model that can be manipulated and used to

generate new code.

• Version support - They support both Java 7 and Java 8 versions that are required.

• Library language - The library is for Java language which is a very widely used language with a big

ecosystem.

• Low unintended alterations - It promises to modify the code without compromising the format

of the original, however, later it was found out that this feature (Lexical Preservation) was still

underdeveloped.

• Efficiency - Well over the needed speed, it did not seem to be a cause for concern.

The library met the use case requirements in a very promising way. It lead far as it enabled the

implementation of all of the 4 anti-pattern refactoring rules. However, the Lexical Preservation was was

faulty, as simple cases such as retaining the indentation of the original source files were a problem.

Ultimately, the issues found in this part of the library brought the implementation to a dead end with

unreasonable compromises. Some attempts to fix some of the problems in the Lexical Preservation

feature were made, but there were just too many issues to resolve. Since this is considered to be a

fundamental feature, the project started from scratch with another library. This was evaluated in the year

2019 so improvements to the Lexical Preservation feature could have been done since then.

3.2.5 Spoon

Spoon is a Java library for analysing, transforming and generating Java source code from Java version

1.0 to 14. It is open-source and hosted on GitHub since 2014 under a double Massachusetts Institute

of Technology (MIT) or CEA CNRS INRIA Logiciel Libre (CeCILL-C) license. At present moment it has

946 stars and 202 forks. It has mainly one steady contributor and some sparse contributors.

The library was first introduced by Renaud Pawlak and Nicolas Petitprez in Inria Lille in 2004[2].

After that, Carlos Noguera did a PhD thesis in 2006 with the existing technology. In 2013 it was revived

thought subsequent PhD thesis from Benoit Cornu, Matias Martinez and Thomas Durieux. In 2016

Spoon joined the OW2 open-source consortium. And has been steadily been maintained since.

24

3.2.6 Analysing the requirements

The Spoon library was analysed with the previously mentioned points to see how it fits the necessary

requirements:

• Maintenance - The library is maintained at a steady pace.

• Community - There are new issues being submitted by users and the community usually contribute

by providing unit tests for the issues they are submitting, which help the maintainers to fix the

problems quickly.

• History - It was created in 2004 and been improving since then. Still, there are very recent features.

• Source Availability - The code is open source under a double MIT or CeCILL-C license.

• Documentation - Very good and to the point. Although some of the internals and new features are

not very well documented.

• AST model - It parses the source code to an AST model that can be manipulated and used to

generate new code.

• Version support - They support both Java 7 and Java 8 versions that are required.

• Library language - The library is for Java language which is a very widely used language with a big

ecosystem.

• Low unintended alterations - It promises to modify the code without compromising the format of

the original. Later it was found that it had minor bugs that could be resolved.

• Efficiency - Well over the needed speed, it did not seem to be a cause for concern.

Spoon allowed me to achieve the implementation of the 4 refactoring rules whilst still maintaining

the format of the original source code when possible. Although there were (and still are) bugs in the

Sniper Pretty printer (the equivalent of the JavaParser Lexical Preservation feature), they were more

manageable and the support was there to help me solve the issues. The meta-model for the AST in

Spoon was, in my opinion, more comprehensible and simpler than that of JavaParser, the Spoon team

chose to use inheritance which to me best suits my usual approach and choices. The Java language

meta is not a dynamic structure so to me this is where inheritance rules over composition.

A community comparison between JavaParser and Spoon can be found in [6], where both the con-

tributors of Spoon and JavaParser reach consensus on what either side lacks or features.

25

3.3 Version Control

Android projects are usually managed via an implementation of a Version Control System (VCS)2 and

the GIT VCS is at present moment the most popular option[3]. Since the objective here is to make

changes in the source code of the application, it would be wise to leverage GIT mechanisms, two in

particular:

• Branching - mechanism which allows code to be submitted without compromising the integrity of

the code being manually modified and published by developers

• Merging - feature which allows the modifications on a branch to be joined with the modification of

another branch, and therefore can be used to join the changes made in a separate branch into the

main branch after such changes are accepted.

The branching and merging mechanics are important for differing any changes done to the Android

project to when they are accepted. LeafactorCI is not a perfect tool and as such it can make mistakes,

therefore the responsibility for its refactors must be given to the project integrator. For example, the main

development branch can be forked into a new one such that LeafactorCI can run a refactoring job on

top of it. Changes can then be committed and left for an integrator to review and later merge into the

main development branch. Now, in order to make the job of the integrator easier, the changes made

to the source code must be kept at a minimum. JavaParser was unable to keep the code changes at

a minimum and usually would make unnecessary changes to the code style. If JavaParser was to be

used as the refactoring library, the job of the integrator would be harder, because he would have had

to go through all the changes that were made to accept them, even those that were unrelated to the

anti-pattern refactors. Spoon on the other hand is able to keep it at a minimum. The branching and

merging mechanics are also very important for continuous integration as a branch can be automatically

created, the changes committed and eventually accepted.

3.4 Distribution and usage

LeafactorCI is intended to be easy to use, and that means that the configuration steps should be kept

at a minimum. The way that this is done in LeafactorCI is by leveraging Gradle, the default build tool

that is used in the development of Android applications. LeafactorCI Main Library is bundled in the

form of a Gradle plugin that can conveniently be installed without much configuration. Since Gradle has

all the information of the Android project, the plugin can access that information without requiring user

intervention. The Gradle plugin can also be published in the Gradle Plugin Repository, so that a user can
2Version control systems are a category of software tools that helps record changes to files by keeping a track of modifications

done to the code.

26

choose to install a particular version from there. Gradle also helps in preparing a continuous integration

task as it already has all the setup necessary to build the project.

The alternate solution of developing a Command Line Interface (CLI) was considered given it would

provide a more versatile approach. However, the decision not to make it stood on the increasing number

of user configurations with inherited use complexity and need of documentation. Thus it was decided

that Gradle would be more practical.

3.5 Continuous Integration

To use LeafactorCI it is not required to have a continuous integration system in place, it is optional, but

it is helpful in automating the refactoring process. In order to design LeafactorCI to support continuous

integration, some requirements need to be considered:

• Fast run-time.

• Low download size.

• Easy setup.

As described in the previous section 3.4 LeafactorCI is bundled as a Gradle Plugin. Gradle is not

particularly fast at building, it depends on the size of the project. A project with more dependencies

and artifacts will take a longer time than a smaller project. All things considered, the Gradle build is

the most expensive operation of the refactoring process. This could have been avoided by using a CLI

instead since the LeafactorCI Main Library does not require the project to be built as it can work on

individual files (this feature is called ”noClasspath” mode in Spoon). However, the benefits of Gradle

out-weight the speed of the simpler CLI alternative, this is also the case for the download size as Gradle

would still need to be downloaded. In the future, it may be necessary to provide the full classpath

to the LeafactorCI Main Library, meaning that dependencies can be analyzed in the AST which may

help to make better refactoring decisions, Gradle facilitates this endeavor by providing an Application

Programming Interface (API) for discovering the entire classpath of the project.

The envisioned way of integrating LeafactorCI with CI is:

1. Prepare a virtual container using a virtualization technology such as Docker or Vagrant. Alterna-

tively use a virtual machine.

2. Schedule the container/virtual machine to run a script e.g. when a commit is pushed to the main

development branch, such that it runs the following sequence:

(a) Clone the GIT repository.

27

(b) Checkout the branch that you want to analyse (e.g. the main development branch).

(c) Create a new local branch with a recognizable name.

(d) Run the refactoring Gradle task.

(e) Commit the changes with an adequate message.

(f) Push the changes to the remote repository.

3. Review/correct the changes done to the newly created branch or discard it.

4. Merge the changes into the original branch.

With this setup developers can focus on making changes of the features. After those features are

pushed to the main branch the CI runner triggers a script execution, such that the refactoring process

starts. The changes are then put in a branch that can be integrated in the main development branch

after they are accepted. If GitHub is used, a pull-request can alternatively be made to review and merge

the changes.

Now that we know the overall structure of the solution, the remaining of this chapter will explain how

the technologies were used to achieve it and dwell in greater detail on the implementation details. All of

the mentioned code references relate to the alpha version of LeafactorCI (https://github.com/TQRG/

leafactor-ci) and commits up to September of 2020.

Spoon does not enforce any methodology for purging anti-patterns, in fact it simply lets us find, add,

modify and remove nodes in the AST. We can expect a large number of different scenarios leading

to the same kind of anti-pattern to form, the disposition of variables and control flow in the code can

complicate things. For instance, let us consider the Recycle anti-pattern, which the objective is to release

an acquired resource after using it. Now picture a method that acquires such a resource and sends it

to another method if some condition is met. We know that the resource should be recycled, but where

it should be recycled is the question. There are a number of cases of interest that need to be evaluated

in order to decide what is the right modification to be applied. LeafactorCI uses a pipeline algorithm

to detect and process such cases. The algorithm is divided into 4 phases to deal with the process of

concisely detecting cases of interest, transforming them and refactoring them inside imperative blocks of

code. Structuring the refactoring process this way allows for measurements to be taken and should lead

to more consistency and predictability. The artifact responsible for refactoring each of the anti-patterns

using the four phases will be referred as a Refactoring Rule.

3.6 Refactoring Rule

In the main library the RefactoringRule is an interface (Figure 3.2) that extends the Spoon Processor

interface along with some others. In Spoon, processors are the visitors of the nodes in the AST. The

28

https://github.com/TQRG/leafactor-ci
https://github.com/TQRG/leafactor-ci

Processor interface also uses Java Generics in order to specify the type of node that will be visited

in the tree (See more in Spoon and Visitor software pattern). This means that every refactoring rule

implements this interface, and during execution it will search for specific types of nodes in the AST.

Four refactoring rules were made so that they search for CtClass objects (Java classes), they explore

from there by traversing the tree. The RefactoringRule interface also extends other important interfaces.

It extends the Iterable interface which provides the declaration for a number of life-cycle methods used

during the iteration of the code blocks, they serve as hooks for the iteration algorithm. It also extends from

the interfaces CaseDetector, CaseTransformer and CaseProcessor which means that a RefactoringRule

has methods for detecting, transforming and processing cases of interest (CaseOfInterest interface).

Figure 3.2: Refactoring rules Unified Modeling Language (UML) diagram

The refactoring rules make use of a iteration method called iterateBlock that governs the way that the

rule life-cycle methods are called. The source code for the iterateBlock can be seen in the code listing

(A.1). The iterateBlock method accepts a RefactoringRule object, along with a logger and a CtBlock

(which is a block of code from the source code that is being evaluated e.g. a method). The purpose of

the function is to organize the refactoring process into phases.

First, it starts with a setup phase that begins in line 11, of the code listing (A.1). The code prepares

the logger that will record the time intervals of each phase execution. After that the algorithm will call the

onSetup life-cycle method of the refactoring rule in order for it to internally prepare for the iteration.

Then comes the detection phase that starts in line 22, in this phase each of the block statements will

be evaluated one at a time in sequence. For each statement, the onWillIterate, the detectCase and the

onDidIterate methods of the refactoring rule object will be called. Ideally, if the block has inner blocks

(e.g a method with an if statement inside), we might want to process the inner block using the same

algorithm, however, in practice and for the purpose of refactoring the 4 refactoring rules, this was not

necessary and the code was commented. In this phase the cases of interest that are detected by the

refactoring rule are collected and sent to the next phase.

Next comes the transformation phase that starts in line 39. The idea of the transformation phase

is to allow the refactoring rule the option to evaluate all the collected cases of interest and filter them,

add more or mutate them e.g. there can be a case of interest that only happens when two other cases

29

of interest are present, so in this stage we can, for example, remove both of them and create a new

one. Three life-cycle methods are called on the refactoring rule during the phase for each cases of

interest, namely, the onWillTransformCase, the transformCase and the onDidTransformCase. After the

transformation, the remaining cases of interest are sent to the final stage.

The final stage is the refactoring phase that starts in line 55. This is where the AST model will be

altered by the refactoring rule. For each case of interest, three life-cycle methods are called on the

refactoring rule, the onWillRefactorCase, the refactorCase and the onDidRefactorCase. Finally the logs

of the phases are collected and are added to the logger.

Four refactoring rules were implemented that used this iteration algorithm, one for each of the anti-

patterns, respectively:

• RecycleRefactoringRule.java

• DrawAllocationRefactoringRule.java

• WakeLockRefactoringRule.java

• ViewHolderRefactoringRule.java

The following subsections will briefly explain how each of the patterns manifests and what heuristics

were used to detect and refactor the anti-patterns along with the refactoring rule class implementations.

All of the following refactoring rules are by no means perfect and there can be many situations where

they would not work or lead to false positive situations due to their infancy, this is safeguarded by the

inspections done by the project integrator. This section will not be presenting any transformation exam-

ples as they can be found in the project test resource folder under root/src/test/resources. Also, in the

following code listings, parts of the code may not be present if it was deemed irrelevant, such as empty

life-cycle methods and import statements.

3.6.1 RecycleRefactoringRule.java

The recycling refactoring rule is meant to prepare the code to release resources improperly managed.

This rule has a set of known resource classes that it knows to be of interest, for now it uses only the

name of the resource class to identify the class, which may lead to incorrect results but this is good

enough enough a means of flagging potential problems, eventually the entire package of the class will

be evaluated for more accurate results.

In line 3 of the code listing (A.4) we can see the opportunities Map attribute that is used to hold all the

classes that are flagged as resource classes. In the line range from 9 to 16 we can see the insertions of

the flagged classes and their respective resource release methods. In this case there are 8 hard-coded

classes. Eventually by using full classpath mode in Spoon we could detect some Recycle interface and

30

see if the evaluated class inherits from it, making it more generalized. As it is, these 8 are the ones that

are verified. They were taken from Leafactor AutoRefactor, which is the predecessor of LeafactorCI.

As previously mentioned, every refactoring rule class extends the Spoon Processor interface and

expects to visit CtClass’s. The visitor method is implemented in the line 294. It accepts the CtClass

element and extracts its methods, and then calls its private refactor method (implemented in line 287)

for each of the methods in the CtClass element. The refactor method then extracts the CtBlock’s of

the methods and for each of them runs the iterateBlock method described previously. The iterateBlock

method will start the algorithm and run each of the stages for that particular CtBlock.

In the detection phase the detectCase method (line 20) of the recycle refactoring rule is called and it

looks for five types of cases of interest:

• VariableDeclared - When a variable is declared. Later used to check if the variable is one of the

resource flagged types.

• VariableReassigned - When a variable is reassigned to another value. This normally means that if

the variable had an allocated resource it will no longer reference it and/or that It can be assigned

the value of another allocated resource.

• VariableUsed - The variable is being used somewhere. This is important in order to recycle the

variable after the last variable usage.

• VariableLost - The code block lost the variable. This means that the code block lost control over

the variable and cannot ascertain its last usage, e.g. the variable was sent to another method,

therefore it is not the responsibility of this block to recycle the variable.

• VariableRecycled - The variable is under control and was recycled properly, we do not wish to

make any changes. This case of interest prevents a refactoring from happening on an already

recycled variable.

Each of the cases detected instances are put inside the detection phase context. This detection does

not account for the relation between the cases of interest, they are independent of one another. Only in

the transformation phase and refactoring phase are they analysed together. Reason being to improve

extensibility, as some of these detectors can be used by other refactoring rules.

The transformation phase of the recycle refactoring rule (method transformCase in line 56) is basi-

cally a filter to check if the cases of interest apply to the conditions of a refactoring, it tests if the used

variables were defined as classes that were flagged (at that point it will only detected variable usages but

not the type of the variables) and that they were declared in this block (if there was a VariableDeclared

case of interest with the same variable name). The same is done for the VariableReassigned cases of

31

interest. VariableUsed and VariableReassigned cases of interest without a matching variable declaration

are ignored.

Finally in the refactoring phase (method refactorCase in line 279) the refactoring rule invokes 3

refactoring methods for processing the remaining cases of interest. The cases of interest prone to lead

to refactoring are the VariableDeclared, VariableReassigned and VariableUsed, and as such each type

of case has its own evaluation method. In the recycleVariableDeclared method (line 154), if and only if

there is no variable usages in the code a recycling statement is pushed inside an if statement into the

code after the variable declaration statement. The if statement checks if the variable is null and if it is

not the recycle method is called. We only use the VariableDeclared case for refactoring in this particular

case since we do not have any variable reassignments and variable usages and the variable needs to

be recycled. The logic behind this is that VariableUsed cases are more important for refactoring, so the

edge cases where VariableUsed are not present are dealt by analysing the other cases of interest.

For every VariableUsed case of interest we will have a refactoring happen if and only if:

• This is the last VariableUsed case of the respective variable

• The variable was not recycled right after the last statement.

• The variable is still in control (e.g. it was not sent to another method).

When this conditions are met the recycling statement is pushed below the last variable usage.

For the VariableReassigned, we only consider a situation where the variable was not used, was not

recycled and is still in control before the reassignment since the last declaration or reassignment. If so

we push a recycling statement right before the reassignment, assuring that the variable reference that

will be lost is properly recycled.

There are of course many more possibilities to consider, which will be left to the community to bring

them forward.

3.6.2 DrawAllocationRefactoringRule.java

The draw allocation anti-pattern occurs when we start to allocate variables in the onDraw method. Al-

locating such variables can cause garbage collection operations that will slow down the execution and

lead to energy inefficiency. The refactoring rule must find allocations in the onDraw method (the onDraw

method has a specific signature) and remove them without compromising the integrity of the code. The

rule is simple, once a variable initialization is found, it is removed and pushed to an attribute of the

class, if and only if the initialization does not depend on other variables, after that the code statement

is changed such that the original variable references the previous initialized class attribute. A cleaning

method is also called before usage of the variable if it is a collection which is necessary because the

allocation is done when the class object is created and not on every onDraw call.

32

Just like the RecycleRefactoringRule.java file, the execution starts with the detection of CtClass’s that

are narrowed down to CtBlocks for processing. The iterateBlock is then called for each of the blocks.

However, in this case we filter the methods by the onDraw method signature, such that only onDraw

methods are iterated and analysed. Then, the blocks are processed with the phasing algorithm using

the life-cycle methods. The detection phase only searches for a single case of interest, which is the

ObjectAllocation case of interest. After finding it the transformation phase is skipped and the refactoring

phase starts immediately. Then the refactoring phase executes (line 46 of the code listing A.3) and it

checks if there is already a class attribute with the same name as the variable that is being assigned

the allocation. If it is not present, the attribute is created and the allocation is placed in the attribute’s

initialization. The reference to the attribute is then assigned to the original statement. Finally, the clear

method invocation is also placed before the variable assignment if the variable type is determined to be

a collection.

Ideally, methods invoked inside the onDraw method should also be considered, however, this feature

is not currently present and will only be created once there is need of it.

3.6.3 WakeLockRefactoringRule.java

Wake locks are mechanisms that prevent the device from hibernating. They are useful when the appli-

cation needs to be running on the background. Keeping a wake lock for too long will consume a lot of

battery energy, therefore, it is important to manage its usage well by releasing them right after they are

no longer necessary.

The code listing (A.6) shows the implementation of the wake lock refactoring rule. Just like the other

refactoring rules, the process method(line 227) finds CtClass’s. It then tries to find the onCreate method

(this is the method where most wake locks are created) and iterates over it using the phasing algorithm.

In the detection phase it looks for two cases of interest:

• WakeLockAcquired - A statement where a wake lock is acquired. To know if a wake lock was

acquired in the onCreate method.

• VariableDeclared - A statement where a variable is declared.

After collecting the cases of interest the transformation phase is skipped and the refactoring phase

starts.

In the refactoring phase (line 50) only WakeLockAcquired cases of interest are analysed. The case

is analysed with the following process, first we check if the variable that is used for the acquire call (the

acquire method is invoked in a wake lock variable object) is being declared in its scope. If so, then it

is a hint that the wake lock is being badly managed since it is in the onCreate method and it does not

seem to be used elsewhere. This is not always the case as the variable may be sent somewhere, this,

33

however, is not taken into consideration for now. If the variable is declared in the scope then its value

must be saved in a class attribute for later release of the wake lock. This is done in line 78, first the

attribute existence is checked in order not to repeat its declaration. If it does not exist then it is created

and an assignment statement is added before the acquire invocation. The management of the wake

lock is done through four Android life-cycle methods:

• onCreate - When the activity is first created.

• onPause - When the activity is put on pause.

• onResume - When the activity resumes.

• onDestroy - When the activity is destroyed.

To fix the wake lock problem, the idea is to release the wake lock in the onPause and onDestroy methods

and acquire it in the onCreate and onResume methods. For that the code starting in line 111 ensures

that all the methods exist, otherwise the methods are created and the release/acquire calls as added

where they are necessary.

3.6.4 ViewHolderRefactoringRule.java

Implementations of the getView method from the Android Adapter interface often have inflating method

invocations that instantiate a View object from an XML layout file. Doing this without care leads to the

recreation of the same View over and over which was shown to increase battery consumption. To avoid

this, the convertView parameter of the getView method must be leveraged in order to reuse a previously

created view. Not only that, calling findViewById in the inflated view can also lead to battery drainage.

To avoid this, all the views that are found should be placed inside of an object called the ViewHolder for

later reuse. Again, like the other refactoring rules, the ViewHolder refactoring rule processes CtClass

elements. It finds the method of the class with the getView signature and runs the phasing algorithm

over it.

In the detection phase there are a couple of cases that need to be detected, they are:

• VariableDeclared - A variable was declared.

• ConvertViewReassignInflator - ConvertView variable was reassigned with a new inflated View in-

stance.

• ConvertViewReuseWithTernary - ConvertView variable was reassigned with a new inflated View

instance using a ternary conditional that verifies if the ConvertView already exists (is not null).

34

• VariableAssignedGetTag - A variable is assigned a value using the getTag method of the Con-

vertView. The ViewHolder object is saved using the setTag between getView invocations, therefore

this case is most likely a retrieval of the ViewHolder instance.

• VariableAssignedFindViewById - A variable is assigned a view using the findViewById method.

This can be a potential problem as the code might not be managing the views using the ViewHolder.

• VariableAssignedInflator - A variable received the value of an inflated View. This can mean that

the inflation process is being repeated.

• VariableCheckNull - A variable is being checked to see if it is null or not. Null checks may represent

reuse of the inflated view or the ViewHolder.

In this refactoring rule the transformation phase is not necessary, so it is skipped. After that the

refactoring phase starts in line 230 of the code listing (A.5) in the method onWillRefactor which prepares

an extra object with data that will be helpful during the refactorCase execution. After that the refactor-

Case method (line 83) is invoked for each of the cases of interest one at a time. The first portion of the

refactorCase method (line 84 to 176) is dedicated to making sure (by refactoring if necessary) that the

ConvertView is being reused and that, if there are call to the findViewById methods, a ViewHolder class

exists. The remaining portion of the code deals with the usage of the ViewHolder, it makes sure that

the variables are being assigned the values of the views from the ViewHolder and that the ViewHolder

attributes are being correctly instantiated using the findViewById method.

3.6.5 Gradle Plugin

The implementation of the Gradle plugin is rather simple because there was no need to use the full

classpath mode, meaning that Spoon does not need to know about the target project dependencies.

In the code there are some artifacts that deal with this feature, but since the implementation of the full

classpath mode was problematic, they were left there to be picked up later. The gradle plugin code is

implemented under src/tqrg/leafactor/ci/gradle/plugin. For the no-classpath mode there are 3 files that

of particular importance:

• LeafactorPlugin.java - Prepares the plugin. Registers the LauncherExtension and adds the Refac-

tor task to the Gradle tasks list.

• LauncherExtension.java - Used to keep the configurations that will be used in the refactoring task.

• Refactor.java - Has the task implementation, refactors the source code of the application.

One thing worth noting is that if we disregard the refactoring rules (that are specific for Android

projects), the skeleton of the project can be used for any Java application that uses Gradle.

35

The code listing (A.2) shows the portion of the source code of the Refactor.java file that is responsible

for the no-classpath mode execution. The processWithoutClassPath method is called after the Gradle

plugin is installed and the refactor task is executed with the command gradlew app:refactor. First it

constructs a compilation unit group that will hold the references of every Java file found in the project

source directory. Then an iteration logger is created for collecting metrics about the execution. After that

a list of the refactoring rules is created, all of the four refactoring rules are instantiated and added to the

list. The compilationUnitGroup.runInIsolation method is then invoked with the list of refactoring rules as

a parameter. This function is responsible for running the Spoon launcher and modifying the Java source

files. For each of the Java files, a launcher is prepared with no-classpath mode and a sniper pretty printer

(for lexical preservation). Then, if everything is okay the code proceeds to check the configuration. If it

is configured to replace the original files, then the output of the Spoon launcher will be the original folder

that contains the file, otherwise it will use the configured directory path. The launcher is then run and

the control flow will transfer to the Spoon library which will parse the Java file into an AST model and

invoke the process methods of the refactoring rules using the visitor pattern.

To publish the plugin, an account was created in the https://plugins.gradle.org/ site, then a config-

uration was made in the project using the pluginBundle extension in the build.gradle file. Also, it was

necessary to add a META-INF.gradle-plugins file in the src/resources folder of the project. After that the

project was ready for publishing by login using gradlew login and then publish with gradlew publishPlug-

ins.

3.7 Testing

In order to assert that the cases are being correctly refactored, a testing suit was created. The testing

suit is powered by JUnit a very popular unit testing tool. What it does is dynamically look into the

src/test/resource folder to find folders with the same name as the refactoring rules classes. If the names

match then it looks for its sub-folders to find the tests. Each test folder contains an input and an output

file where the input is the file provided and the output is the file with the expected result that should be

generated by LeafactorCI when using the input file.

With this setup, adding new tests is easy. Simply add a new folder under the refactoring rule folder

and an input and output file inside it.

As of now there are 25 tests distributed between the four refactoring rules. The recycle refactoring

is the most tested rule of the four, because it was the first one that was introduced. Since LeafactorCI is

based on Leafactor (an early version for the eclipse plugin implemented by Luı́s Cruz), it was important

to support the same tests, they were adapted and added to the testing suit.

36

3.8 Continuous Integration

Gradle does most of the job in supporting CI. A simple script was created that can be used as reference

for integrating LeafactorCI. The script is shown in the code listing (3.1). The script leverages GIT to

control and push changes to the repository. It is expected that a cloned GIT repository is in place as it is

common for a CI platform to clone the repository at a specific branch or commit. It starts by attributing

the user identification since operations will be done by an automatic script. Then the revision number is

collected in order to identify the changes that will be made. A new branch is then created and checked

out, meaning that any changes will be committed in this particular branch. The branch name also has

the revision suffixed. Then the Gradle build process is started, followed by the execution of the refactor

operation. Every change is then added to the stage and committed with a simple message. If the remote

is wrong, it can be setup using the GIT remote add operation. Finally, the changes are pushed to the

remote repository.

Listing 3.1: The CI sample script

1 git config user.email "EMAIL OF THE COMMIT AUTHOR"

2 git config user.name "NAME OF THE COMMIT AUTHOR"

3 REV=$(git rev-parse --short HEAD)

4 git checkout -b "leafactor-refactoring-$REV"

5 ./gradlew build

6 ./gradlew refactor

7 cd app/src

8 git add .

9 cd ../../

10 git commit --allow-empty -m "LeafactorCI refactoring changes."

11 git remote rm origin

12 git remote add origin "GIT REPOSITORY URL"

13 git push origin "leafactor-refactoring-$REV"

37

4
Evaluation

Contents

4.1 User study . 39

4.2 Can LeafactorCI be used inside a CI environment? . 43

4.3 How easy it is to adopt LeafactorCI? . 44

4.4 Performance . 46

38

The previous chapters presented the architecture of LeafactorCI and how it is designed to be easy

to use in CI environments. In this chapter I will be describing how LeafactorCI was evaluated.

4.1 User study

To evaluate the difficulty of adoption a small user study was conducted, composed of 2 surveys and a

hands-on installation trial.

To dissimulate the understanding about the usage of energy practices and publicize LeafactorCI, it

was devised a short and informational survey and published it in the GitHub software community. The

survey was composed of the following questions along with related information:

• What is the role that best describes you?

• Have you worked in any Android mobile applications?

• Have you ever heard about energy bugs (bugs in the code that lead to more energy consumption),

are they a concern to you?

• Would you like to hear more about what they are?

• There is a new free and open-source tool called LeafactorCI that just came out in alpha stage that

can detect and refactor the previously mentioned anti-patterns and can even be integrated into a

CI environment, would you be willing to learn more about it?

• LeafactorCI is very easy to setup. Would you be willing to try LeafactorCI?

Figure 4.1: Distribution of the participant roles.

39

Figure 4.2: Distribution of participants that worked on Android app previously.

Figure 4.3: Distribution of participant’s willingness for hearing more about the anti-patterns.

The questionnaire was answered by 16 different people. 56.3% described themselves as developers,

12.5% of them as Software Architects, 12.5% as Lead Developers the rest of them described themselves

as other roles related to application development (Figure 4.1). 75.0% of them had worked on Android

mobile applications while the rest did not (Figure 4.2). 56.2% have heard about energy bugs, at least

37.5% say they are a concern to them (there were ambiguous answers that were not considered as

a definite yes). Only 31.3% knew about at least one of the 4 patterns (Recycle, View Holder, Draw

Allocation and Wake Lock). 82.3% wanted to know more about the patterns (Figure 4.3). After briefly

being introduced to LeafactorCI, 78.6% said that they were willing to know more about it (Figure 4.4),

however, only 63.6% said that they were willing to try it (Figure 4.5).

While the sample is small, the results suggest that energy practices are not disseminated enough

through the community and that the community is willing to try LeafactorCI.

40

Figure 4.4: Distribution of participant’s willingness for hearing more about the LeafactorCI.

A small experiment was also conducted with three developers. The process was as follows, they had

to choose a couple of Android open-source repositories at random with more than 300 commits, then

they had to try to install LeafactorCI on each of them to see how easy it would be. They were asked to

first select the repositories (at least three repositories per person) and then to fork them. After that they

were to make the installation and commit the changes back to the forked repository. Then, they were

asked to run the LeafactorCI tool and if any changes were to occur, they were to be committed to the

forked repositories as well. At the end they were asked to fill in a survey with the following questions:

• Were you able to install LeafactorCI?

• How difficult was the installation process? Leave empty if you were not able to set it up. (1 - 5).

• Did you need to troubleshoot while setting up LeafactorCI? Leave empty if you were not able to set

it up.

• Were you able to run the refactoring task?

• Did LeafactorCI correct any problems in your application? Leave empty if you were unable to run

it.

• Did you find LeafactorCI useful? Do you see potential in it?

The three participants were able to make the installation (Figure 4.6). Two of the participants reported

that the difficulty scoring was a one out of five and one participant reported that it was a two out of five

(Figure 4.7). Two of the participants had to troubleshoot (Figure 4.8). Every single one of the participants

41

Figure 4.5: Distribution of participant’s willingness for trying LeafactorCI.

Figure 4.6: Distribution of participant’s ability in installing LeafactorCI.

was able to run the refactoring task (Figure 4.9). Two of the participants found at least one of the anti-

patterns in at least one of the repositories. Finally, all the participants found the tool useful and with

potential.

In total 11 arbitrary repositories1 were tried. From what I could gather, LeafactorCI did not detect

energy bugs in most of the repositories, only two repositories out of the 11 were found to have energy

bugs. Also, there were one or two repositories where problems were found that prevented the execution

of the refactoring task due to bugs in the Spoon library. One of which led to an open issue. Other

problems were related to Gradle version incompatibilities that were easily overcome. The installation

procedure was at most times easy and without problems. It is also important to delineate that the

participants had no prior experience with the repositories that they had chosen, and yet they were able
1Whose forks can be found in https://gist.github.com/moraispgsi/bc3eca2f92d3151bc85ac86f2248078e

42

Figure 4.7: Distribution of participant’s difficulty in installing LeafactorCI.

to install and run LeafactorCI, this fact provides a substantial indication of its ease of use.

Outside of this user-study other people tried and successfully used LeafactorCI to see if there were

problems in their project, to which, no energy bugs were found.

4.2 Can LeafactorCI be used inside a CI environment?

Before addressing the main question, let us consider a sub-question. Does LeafactorCI work in a normal

environment? Yes, and the way this was guaranteed was by mean of introducing a test battery that given

an input file executes LeafactorCI over it and check if the output corresponds to the optimal output file.

There are 25 tests each, in most cases, with more than one variation of the anti-patterns present.

This guarantees that LeafactorCI is able to support the set of conditions present in the input files which

account for the most common usage. In all of the testing cases the code semantics were guaranteed. For

other use cases that this test battery does not cover, the guarantee for maintaining the code semantics

falls back to the reviewer (which in a collaborative environment would be called the project integrator),

along with the possibility of false positives.

In order to be used, LeafactorCI needs to be published and be readily available. During this dis-

sertation, LeafactorCI was released in alpha stage (as a Gradle plugin in the Gradle plugins repository

at https://plugins.gradle.org/plugin/tqrg.leafactor.ci) and can be found at https://github.

com/TQRG/leafactor-ci. In the README.md of the LeafactorCI repository is the instructions for the

installation along with a Frequently Asked Questions (FAQ) section. In the same README.md file is

present the instructions to execute and publish LeafactorCI as a contributor. Finally, there is a section of

43

https://plugins.gradle.org/plugin/tqrg.leafactor.ci
https://github.com/TQRG/leafactor-ci
https://github.com/TQRG/leafactor-ci

Figure 4.8: Distribution of participant’s necessity for troubleshooting during the LeafactorCI installation.

known issues and their respective states of resolution.

Now, to show that LeafactorCI can be setup in a CI environment, during this dissertation, a fork was

made from an open-source Android project called Slide (the forked repository is, at present time, at

https://github.com/TQRG/Slide). Then, the LeafactorCI plugin installation was made and the travis.yml

file was modified(which is the file that is used to configure the CI pipeline in TravisCI), the changes can

be found in https://github.com/TQRG/Slide/commit/f063e548bd2f770bde96b401096236ae6b8cf3af

along with some other unrelated changes that were necessary to bring the project back to more modern

versions. The changes were fairly easy to make. It was set up such that whenever a commit is done

to the code-base, a new branch is created and LeafactorCI is executed. A pull request could then be

created in order to decide the branch’s merge-ability.

4.3 How easy it is to adopt LeafactorCI?

LeafactorCI is meant to be easy to adopt since it leverages the same platform that the Android project

is built upon, Gradle. The installation process is very easy, excluding some hiccups that may happen it

can be as simple as adding a line of code inside a file(build.gradle file). Of-course due to the differences

between every Android project, such as its own setup and its version dependencies there might be some

inconveniences to be overcome. As of now, it have yet to be compiled a list of system requirements

and supported versions of Gradle and the Android Software Development Kit (SDK). By publishing an

alpha version those problems will become more evident and troubleshooting instructions will be added

incrementally to the LeafactorCI project documentation. Adopting LeafactorCI right now comes with the

problems of any new software project, it has bugs, it has the bare minimum options and there is no

44

https://github.com/TQRG/Slide/commit/f063e548bd2f770bde96b401096236ae6b8cf3af

Figure 4.9: Distribution of participant’s ability for executing LeafactorCI.

community support. Early adopters have to take this into consideration and look past to see its potential.

A major advantage of LeafactorCI is its open-source nature, anyone finding difficulties can open an issue

or even contribute to the source-code.

In terms of adopting LeafactorCI in a CI environment, some questions should be place on the devel-

opers:

• Do I need LeafactorCI? A project with very few changes over time might not be a good candidate

for using LeafactorCI in CI.

• What should trigger the refactoring process? Should it be a commit in the development branch,

or a commit in another specific branch, should it be when opening a pull-request, those options

should be considered.

• How often should the refactoring process happen? This should account for the number of changes

that are made over time in the project. More changes lead to more possibilities for anti-patterns to

form.

• What to do with the changes? Should a branch be created or should another way be used to

evaluate the changes that were made. Like e.g. sending an informative e-mail which then can be

used as reference for a manual commit.

The adoption can be as difficult as the developers want, it depends on the use case.

45

4.4 Performance

When Gradle was adopted, it was a choice between performance and ease of use. Creating a CLI

instead of a Gradle plugin would run much faster as there would be no need to build the entire project

before refactoring. However, minding the long run, eventually refactoring rules might need to use full

classpath mode, meaning that it would need to find all the projects dependencies. Therefore, a CLI

would turn out to be inferior because it would be difficult to extract the dependencies, which in contrast

is fairly manageable in Gradle. So, there is a great cost in performance when executing LeafactorCI due

to the Gradle build task. The execution of LeafactorCI mainly depends on the speed of the build of the

Android project itself. The speed of the actual refactoring turns out to be insignificant when compared to

the speed of the build, such that it is not worth measuring.

46

5
Conclusion

Contents

5.1 Motivation . 49

5.2 Contributions . 49

5.3 System Limitations and Future Work . 50

47

48

In the course of this work, LeafactorCI was exposed as a solution to a problem in android applications

energy consumption. The first chapter (chapter 1) was dedicated to defining the problem at hand and

the objectives delineated for this work to answer it in a general sense. In chapter 2 an overview of the

related work defines the current contributions to help solving this problem, the related studies results

which better define the problem and evaluates solutions. Afterwards, in chapter 3 the overall solution

is defined establishing the design decisions for the development of LeafactorCI. Subsequently, the final

solution’s implementation details were shown. Finally, in chapter 4 an evaluation of resulting solution,

along with subjects and feedback was presented.

5.1 Motivation

This dissertation started with a problem and an opportunity. The problem was the lack of availability of

tools and means for fixing energy bugs in the Android application development community, which may

lead to bad application reviews and consequently less sales. As for the opportunity, it was the rise of

CI, the increasing adoption of CI practices and usage of CI services that is improving the way that we

integrate software.

5.2 Contributions

This work adopted a method of refactoring 4 distinct anti-patterns (Wake Lock, View Holder, Recycle,

and Draw Allocation) through static analysis of the source-code of Android Java projects in order to

improve the energy efficiency of Android applications, furthermore, a CI solution was designed. The so-

lution was composed of a refactoring tool called LeafactorCI and a strategy for integrating it inside a CI

environment. The design decisions were driven by the current and rising practices of Android application

development, which include the usage of GIT, Gradle and CI platforms that use containerization tech-

nology. The tool was evaluated by means of a user study to discern its usability, and the data suggest

that it falls in the easy to use category.

LeafactorCI’s current stage solution is very promising having acquired versatility, adaptability and

functional potential, which already surpasses its predecessor (Leafactor on AutoRefactor). The user no

longer needs to be constrained to a specific IDE to get rid of the energy bugs of his project. The source-

code is available for any contributor who would like to advance this technology at https://github.com/

TQRG/leafactor-ci. For developers looking to improve LeafactorCI, they are provided with a simple

way to add new refactoring rules and test them without the added risk of tempering with the existing

functionality. The current version of LeafactorCI is alpha and there is a long road ahead until it becomes

a stable and widely used solution.

49

https://github.com/TQRG/leafactor-ci
https://github.com/TQRG/leafactor-ci

The architecture was designed to adapt to the project’s team specific workflow. This work provided

a strategy to integrate LeafactorCI in a CI environment. There are of course many other alternative

strategies that can be adopted and the responsibility falls on the project developers to make sure that

the one adopted is a success.

5.3 System Limitations and Future Work

LeafactorCI is new, containing some limitations. The first limitation and most important one right now is

the lexical preservation. Right now the refactoring library Spoon, the library that LeafactorCI is based

upon, has a volatile support for this feature, which means that LeafactorCI is at the mercy of the Spoon

community when it comes to providing clean refactorings with a small change footprint. During the

development of LeafactorCI many were the times where issues arose in this functionality, and there are

still some issues to be solved on their end. Hopefully, the Spoon team will continue to improve this

feature.

Another limitation is that there are no clear definition of the versions that are supported. A developer

intending to use it does not know if his project is supported by LeafactorCI. This limitation can be resolved

by testing a big variety of project versions and Gradle versions to see where it breaks and, for starters,

solving the problems when possible for, at least, the most common versions.

There are still some polishing to be done to the refactoring rules. They only account for the simplest

of cases. More work has to be done to support more complex cases such as when there are branches

in the control flow and more complex statements such as using lambda functions with closures.

The fact that there are only 4 refactoring rules so far makes it harder to adopt. If more refactoring

rules were created, the more value this would have and therefore it would make it more appealing to

adopting.

These limitations should be considered when using LeafactorCI. Thus, its early adoption should

account with the will to be critical and contributive to this project with a lot of potential to help us do

better with our applications.

50

Bibliography

[1] Google code, 2020. URL https://code.google.com/. Visited in May of 2020.

[2] Spoon history, 2020. URL https://github.com/INRIA/spoon/issues/2741. Visited in May of

2020.

[3] Git popularity, 2020. URL https://rhodecode.com/insights/version-control-systems-2016.

Visited in May of 2020.

[4] Javaparser, 2020. URL https://github.com/javaparser/javaparser. Visited in May of 2020.

[5] Spoon, 2020. URL https://github.com/INRIA/spoon. Visited in May of 2020.

[6] Spoon vs javaparser, 2020. URL https://github.com/INRIA/spoon/issues/1303. Visited in May

of 2020.

[7] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab Hamid, Feng Xia, and Muhammad Shiraz.

A Review on mobile application energy profiling: Taxonomy, state-of-the-art, and open research

issues. Journal of Network and Computer Applications, 58:42–59, 2015. ISSN 10958592. doi:

10.1016/j.jnca.2015.09.002.

[8] Abhijeet Banerjee and Abhik Roychoudhury. Automated re-factoring of Android apps to enhance

energy-efficiency. Proceedings of the International Workshop on Mobile Software Engineering

and Systems - MOBILESoft ’16, pages 139–150, 2016. doi: 10.1145/2897073.2897086. URL

http://dl.acm.org/citation.cfm?doid=2897073.2897086.

[9] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoudhury. Detecting

energy bugs and hotspots in mobile apps. Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering - FSE 2014, pages 588–598, 2014. doi:

10.1145/2635868.2635871. URL http://dl.acm.org/citation.cfm?doid=2635868.2635871.

[10] Luis Cruz and Rui Abreu. Performance-Based Guidelines for Energy Efficient Mobile Applications.

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MO-

51

https://code.google.com/
https://github.com/INRIA/spoon/issues/2741
https://rhodecode.com/insights/version-control-systems-2016
https://github.com/javaparser/javaparser
https://github.com/INRIA/spoon
https://github.com/INRIA/spoon/issues/1303
http://dl.acm.org/citation.cfm?doid=2897073.2897086
http://dl.acm.org/citation.cfm?doid=2635868.2635871

BILESoft), pages 46–57, 2017. doi: 10.1109/MOBILESoft.2017.19. URL http://ieeexplore.

ieee.org/document/7972717/.

[11] Luis Cruz and Rui Abreu. Using automatic refactoring to improve energy efficiency of android apps.

CoRR, abs/1803.05889, 2018. URL http://dblp.uni-trier.de/db/journals/corr/corr1803.

html#abs-1803-05889.

[12] Luis Cruz and Rui Abreu. EMaaS: Energy measurements as a service for mobile applica-

tions. IEEE/ACM 41st International Conference on Software Engineering, 2019. doi: 10.1007/

s10664-019-09701-0.

[13] Luis Cruz, Rui Abreu, and Jean Noel Rouvignac. Leafactor: Improving Energy Effi-

ciency of Android Apps via Automatic Refactoring. Proceedings - 2017 IEEE/ACM 4th In-

ternational Conference on Mobile Software Engineering and Systems, MOBILESoft 2017,

2017. doi: 10.1109/MOBILESoft.2017.21. URL http://www.mendeley.com/research/

leafactor-improving-energy-efficiency-android-apps-via-automatic-refactoring.

[14] Luis Cruz, Rui Abreu, and David Lo. To the attention of mobile software developers: guess

what, test your app! Empirical Software Engineering, 24(4):2438–2468, 2019. URL http:

//dblp.uni-trier.de/db/journals/ese/ese24.html#CruzAL19.

[15] Luı́s Cruz. Tools and Techniques for Energy-Efficient Mobile Application Development, PhD thesis.

2019.

[16] Luı́s Cruz and Rui Abreu. Catalog of energy patterns for mobile applications. Empirical Software

Engineering, 03 2019. doi: 10.1007/s10664-019-09682-0.

[17] Andre Luiz Tinassi Damato, Linnyer Beatrys Ruiz, Anderson Faustino Da Silva, and Jose Ca-

margo Da Costa. EProf: An accurate energy consumption estimation tool. Proceedings - Interna-

tional Conference of the Chilean Computer Science Society, SCCC, pages 210–218, 2012. ISSN

15224902. doi: 10.1109/SCCC.2011.28.

[18] Ralph Johnson Richard Helm Erich Gamma, John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. 1994.

[19] Martin Fowler. 2006. URL https://martinfowler.com/articles/continuousIntegration.htm.

[20] Martin Fowler and Kent Beck. Refactoring : Improving the Design of Existing Code. Addison-

Wesley, 1 edition, July 2013. ISBN 0201485672. URL http://martinfowler.com/books/

refactoring.html.

52

http://ieeexplore.ieee.org/document/7972717/
http://ieeexplore.ieee.org/document/7972717/
http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-05889
http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-05889
http://www.mendeley.com/research/leafactor-improving-energy-efficiency-android-apps-via-automatic-refactoring
http://www.mendeley.com/research/leafactor-improving-energy-efficiency-android-apps-via-automatic-refactoring
http://dblp.uni-trier.de/db/journals/ese/ese24.html#CruzAL19
http://dblp.uni-trier.de/db/journals/ese/ese24.html#CruzAL19
https://martinfowler.com/articles/continuousIntegration.htm
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html

[21] Mark Gordon, Lide Zhang, and Birjodh Tiwana. Powertutor, 2020. URL https://github.com/

msg555/PowerTutor. Visited in May of 2020.

[22] Marion Gottschalk. Energy Refactorings. Master Thesis, http://www.se.uni-

oldenburg.de/documents/gottschalk-MA2013.pdf, 2013.

[23] Shuai Hao, Ding Li, William G.J. Halfond, and Ramesh Govindan. Estimating Android applica-

tions’ CPU energy usage via bytecode profiling. 2012 1st International Workshop on Green and

Sustainable Software, GREENS 2012 - Proceedings, pages 1–7, 2012. ISSN 1050-2947. doi:

10.1109/GREENS.2012.6224263.

[24] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage, costs, and ben-

efits of continuous integration in open-source projects. Proceedings of the 31st IEEE/ACM Inter-

national Conference on Automated Software Engineering - ASE 2016, pages 426–437, 2016. doi:

10.1145/2970276.2970358. URL http://dl.acm.org/citation.cfm?doid=2970276.2970358.

[25] Ding Li and William G. J. Halfond. An investigation into energy-saving programming practices for

Android smartphone app development. Proceedings of the 3rd International Workshop on Green

and Sustainable Software - GREENS 2014, pages 46–53, 2014. doi: 10.1145/2593743.2593750.

URL http://dl.acm.org/citation.cfm?doid=2593743.2593750.

[26] Ding Li, Shuai Hao, Jiaping Gui, and William G.J. Halfond. An empirical study of the en-

ergy consumption of android applications. Proceedings - 30th International Conference on Soft-

ware Maintenance and Evolution, ICSME 2014, pages 121–130, 2014. ISSN 1063-6773. doi:

10.1109/ICSME.2014.34.

[27] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto, Massimiliano Di

Penta, and Denys Poshyvanyk. Mining energy-greedy API usage patterns in Android apps: an em-

pirical study. Proceedings of the 11th Working Conference on Mining Software Repositories - MSR

2014, pages 2–11, 2014. doi: 10.1145/2597073.2597085. URL http://dl.acm.org/citation.

cfm?doid=2597073.2597085.

[28] Umme Ayda Mannan, Iftekhar Ahmed, Rana Abdullah M Almurshed, and Carlos Jensen. Under-

standing Code Smells in Android Applications. 2016 IEEE/ACM International Conference on Mo-

bile Software Engineering and Systems (MOBILESoft), page 2997, 2016. doi: 10.1109/MobileSoft.

2016.048.

[29] Rodrigo Morales, Ruben Saborido, Foutse Khomh, Francisco Chicano, and Giuliano Antoniol.

EARMO: An Energy-Aware Refactoring Approach for Mobile Apps. IEEE Transactions on Software

Engineering, 2017. ISSN 00985589. doi: 10.1109/TSE.2017.2757486.

53

https://github.com/msg555/PowerTutor
https://github.com/msg555/PowerTutor
http://dl.acm.org/citation.cfm?doid=2970276.2970358
http://dl.acm.org/citation.cfm?doid=2593743.2593750
http://dl.acm.org/citation.cfm?doid=2597073.2597085
http://dl.acm.org/citation.cfm?doid=2597073.2597085

[30] Danny van Bruggen Nicholas Smith and Federico Tomassetti. JavaParser: Visisted. 2019. URL

https://leanpub.com/javaparservisited.

[31] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, and Andrea De Lucia. On

the impact of code smells on the energy consumption of mobile applications. Information and

Software Technology, (June):1–13, 2018. ISSN 09505849. doi: 10.1016/j.infsof.2018.08.004. URL

https://linkinghub.elsevier.com/retrieve/pii/S0950584918301678.

[32] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent inside my app?:

fine grained energy accounting on smartphones with eprof. In Pascal Felber, Frank Bellosa, and

Herbert Bos, editors, EuroSys, pages 29–42. ACM, 2012. ISBN 978-1-4503-1223-3. URL http:

//dblp.uni-trier.de/db/conf/eurosys/eurosys2012.html#PathakHZ12.

[33] Jan Reimann, Martin Brylski, and Uwe Aßmann. A tool-supported quality smell catalogue for an-

droid developers. Softwaretechnik-Trends, 34(2), 2014. URL http://dblp.uni-trier.de/db/

journals/stt/stt34.html#ReimannBA14.

[34] Jean-Noël Rouvignac. Autorefactor, 2020. URL https://github.com/JnRouvignac/

AutoRefactor. Visited in May of 2020.

[35] Cagri Sahin, Furkan Cayci, Irene Lizeth Manotas Gutiérrez, James Clause, Fouad Kiamilev, Lori

Pollock, and Kristina Winbladh. Initial explorations on design pattern energy usage. 2012 1st

International Workshop on Green and Sustainable Software, GREENS 2012 - Proceedings, pages

55–61, 2012. doi: 10.1109/GREENS.2012.6224257.

[36] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous Integration, Delivery and

Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices. IEEE Access,

5:3909–3943, 2017. ISSN 21693536. doi: 10.1109/ACCESS.2017.2685629.

[37] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice differences in industry soft-

ware development. Journal of Systems and Software, 87(1):48–59, 2014. ISSN 01641212. doi:

10.1016/j.jss.2013.08.032. URL http://dx.doi.org/10.1016/j.jss.2013.08.032.

[38] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov. Quality

and productivity outcomes relating to continuous integration in GitHub. Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015, pages 805–816,

2015. doi: 10.1145/2786805.2786850. URL http://dl.acm.org/citation.cfm?doid=2786805.

2786850.

[39] Roberto Verdecchia, René Aparicio Saez, Giuseppe Procaccianti, and Patricia Lago. Empirical

evaluation of the energy impact of refactoring code smells. In Birgit Penzenstadler, Steve Easter-

54

https://leanpub.com/javaparservisited
https://linkinghub.elsevier.com/retrieve/pii/S0950584918301678
http://dblp.uni-trier.de/db/conf/eurosys/eurosys2012.html#PathakHZ12
http://dblp.uni-trier.de/db/conf/eurosys/eurosys2012.html#PathakHZ12
http://dblp.uni-trier.de/db/journals/stt/stt34.html#ReimannBA14
http://dblp.uni-trier.de/db/journals/stt/stt34.html#ReimannBA14
https://github.com/JnRouvignac/AutoRefactor
https://github.com/JnRouvignac/AutoRefactor
http://dx.doi.org/10.1016/j.jss.2013.08.032
http://dl.acm.org/citation.cfm?doid=2786805.2786850
http://dl.acm.org/citation.cfm?doid=2786805.2786850

brook, Colin C. Venters, and Syed Ishtiaque Ahmed, editors, ICT4S, volume 52 of EPiC Series in

Computing, pages 365–383. EasyChair, 2018. URL http://dblp.uni-trier.de/db/conf/ict4s/

ict4s2018.html#VerdecchiaSPL18.

[40] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan Vasilescu. The

impact of continuous integration on other software development practices: a large-scale empirical

study. In Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen, editors, ASE, pages 60–71.

IEEE Computer Society, 2017. ISBN 978-1-5386-2684-9. URL http://dblp.uni-trier.de/db/

conf/kbse/ase2017.html#ZhaoSZFV17.

55

http://dblp.uni-trier.de/db/conf/ict4s/ict4s2018.html#VerdecchiaSPL18
http://dblp.uni-trier.de/db/conf/ict4s/ict4s2018.html#VerdecchiaSPL18
http://dblp.uni-trier.de/db/conf/kbse/ase2017.html#ZhaoSZFV17
http://dblp.uni-trier.de/db/conf/kbse/ase2017.html#ZhaoSZFV17

A
Project Code

This section shows only the most important source files of the project. The files were trimmed out in

order to abide to the sizing constraints.

Listing A.1: The Iterable interface
1 . . .

2 p u b l i c i n t e r f a c e I t e r a b l e {

3 . . .

4 s t a t i c vo id i t e r a t e B l o c k (

5 Refactor ingRule ru le ,

6 I t e r a t i o n L o g g e r logger ,

7 CtBlock block ,

8 boolean isDeep ,

9 i n t depth

10) {

11 SimpleI tera t ionPhaseLogEntry setupLogEntry = new SimpleI tera t ionPhaseLogEntry (ru le , ” Se t t i ng up i t e r a t i o n ” , ” Logs the setup phase of an

i t e r a t i o n ”) ;

12

13 / / SETUP PHASE

14 setupLogEntry . s t a r t () ;

15 SimpleI tera t ionPhaseLogEntry detect ionPhaseLogEntry = new SimpleI tera t ionPhaseLogEntry (ru le , ” Detec t ing Pat te rns ” , ” Logs the de tec t i on

phase of an i t e r a t i o n ”) ;

16 SimpleI tera t ionPhaseLogEntry t ransformat ionPhaseLogEntry = new SimpleI tera t ionPhaseLogEntry (ru le , ” Transforming Cases of I n t e r e s t ” , ” Logs

the t rans fo rma t i on phase of an i t e r a t i o n ”) ;

17 SimpleI tera t ionPhaseLogEntry re factor ingPhaseLogEntry = new SimpleI tera t ionPhaseLogEntry (ru le , ” Re fac to r ing Cases of I n t e r e s t ” , ” Logs the

processing phase of an i t e r a t i o n ”) ;

56

18 Detect ionPhaseContext detect ionPhaseContext = new Detect ionPhaseContext () ;

19 detect ionPhaseContext . b lock = block ;

20 r u l e . onSetup (detect ionPhaseContext) ;

21 setupLogEntry . stop () ;

22 / / END SETUP PHASE

23

24 / / DETECTION PHASE

25 detect ionPhaseLogEntry . s t a r t () ;

26 f o r (i n t i = 0 ; i < block . getStatements () . s i ze () ; i ++) {

27 detect ionPhaseContext . statement = block . getStatements () . get (i) ;

28 detect ionPhaseContext . statementIndex = i ;

29 r u l e . o n W i l l I t e r a t e (detect ionPhaseContext) ;

30 i f (isDeep && detect ionPhaseContext . statement ins tanceo f CtBlock) {

31 CtBlock statementBlock = (CtBlock) detect ionPhaseContext . statement ;

32 / / I t e r a t i o n . i t e r a t e B l o c k (ru le , logger , statementBlock , t rue , depth + 1) ;

33 / / Todo : do something wi th the innerContex t

34 }

35 r u l e . detectCase (detect ionPhaseContext) ;

36 r u l e . onD id I t e ra te (detect ionPhaseContext) ;

37 }

38 detect ionPhaseLogEntry . stop () ;

39 / / END DETECTION PHASE

40

41 / / TRANSFORMATION PHASE

42 transformat ionPhaseLogEntry . s t a r t () ;

43 L i s t<CaseOfInterest> copyCasesDetected = new Ar rayL i s t<>(detect ionPhaseContext . c a s e O f I n t e r e s t L i s t) ;

44 TransformationPhaseContext t ransformat ionPhaseContext = new TransformationPhaseContext () ;

45 t ransformat ionPhaseContext . b lock = block ;

46 transformat ionPhaseContext . c a s e O f I n t e r e s t L i s t = copyCasesDetected ;

47 r u l e . onWi l lTransform (t ransformat ionPhaseContext) ;

48 f o r (CaseOf Interest caseOf In te res t : copyCasesDetected) {

49 transformat ionPhaseContext . caseOf In te res t = caseOf In te res t ;

50 r u l e . onWil lTransformCase (t ransformat ionPhaseContext) ;

51 r u l e . transformCase (t ransformat ionPhaseContext) ;

52 r u l e . onDidTransformCase (t ransformat ionPhaseContext) ;

53 }

54 transformat ionPhaseLogEntry . stop () ;

55 / / END TRANSFORMATION PHASE

56

57 / / REFACTORING PHASE

58 refactor ingPhaseLogEntry . s t a r t () ;

59 L i s t<CaseOfInterest> copyCasesFi l tered = transformat ionPhaseContext . ge tResu l t () ;

60 Refactor ingPhaseContext re fac tor ingPhaseContext = new Refactor ingPhaseContext () ;

61 re fac tor ingPhaseContext . o f f s e t = 0 ;

62 re fac tor ingPhaseContext . b lock = block ;

63 re fac tor ingPhaseContext . casesOf In te res t = copyCasesFi l tered ;

64 r u l e . onWi l lRe fac to r (re fac tor ingPhaseContext) ;

65 f o r (CaseOf Interest caseOf In te res t : copyCasesFi l tered) {

66 re fac tor ingPhaseContext . caseOf In te res t = caseOf In te res t ;

67 r u l e . onWil lRefactorCase (re fac tor ingPhaseContext) ;

68 r u l e . re fac torCase (re fac tor ingPhaseContext) ;

69 r u l e . onDidRefactorCase (re fac tor ingPhaseContext) ;

70 }

71 refactor ingPhaseLogEntry . stop () ;

72 / / END REFACTORING PHASE

73

74 logger . getLogs () . add (setupLogEntry) ;

75 logger . getLogs () . add (detect ionPhaseLogEntry) ;

76 logger . getLogs () . add (t ransformat ionPhaseLogEntry) ;

77 logger . getLogs () . add (re factor ingPhaseLogEntry) ;

78 }

79 }

Listing A.2: The Refactor class
1 . . .

57

2 p u b l i c c lass Refactor extends Defaul tTask {

3 p r i v a t e P ro jec t p r o j e c t ;

4 p r i v a t e LauncherExtension launcherExtens ion ;

5

6 void i n i t (P ro jec t p ro jec t , LauncherExtension launcherExtens ion) {

7 t h i s . p r o j e c t = p r o j e c t ;

8 t h i s . launcherExtension = launcherExtens ion ;

9 }

10

11 p r i v a t e AppExtension getAppExtension () {

12 / / Check i f the Android AppPlugin i s present

13 i f (! p r o j e c t . ge tP lug ins () . hasPlugin (AppPlugin . c lass)) {

14 throw new RuntimeException (” should be declared a f t e r 'com. andro id . a p p l i c a t i o n ' ”) ;

15 }

16 / / Get the AppExtension from the grad le runt ime

17 AppExtension appExtension = p r o j e c t . getExtensions () . f indByType (AppExtension . c lass) ;

18 asser t appExtension != n u l l ;

19 r e t u r n appExtension ;

20 }

21 . . .

22 p r i v a t e vo id processWithoutClassPath () throws IOExcept ion {

23 S t r i n g pro jec tPa th = p r o j e c t . g e t P r o j e c t D i r () . toPath () . t o S t r i n g () ;

24 S t r i n g sourcePath = Paths . get (p ro jec tPath , ” s rc ” , ” main ” , ” java ”) . t o S t r i n g () ;

25

26 Compi lat ionUni tGroup compi la t ionUni tGroup = new Compi lat ionUni tGroup (n u l l) ;

27 se tupOutpu tD i rec to ry (compi la t ionUni tGroup , ” main ”) ;

28 compi la t ionUni tGroup . add (new F i l e (sourcePath)) ;

29

30 I t e r a t i o n L o g g e r logger = new I t e r a t i o n L o g g e r () ;

31 L i s t<Refactor ingRule> r e fac to r i ngRu les = new Ar rayL i s t<>();

32

33 / / Adding a l l the r e f a c t o r i n g ru l es

34 re fac to r i ngRu les . add (new RecycleRefactor ingRule (logger)) ;

35 re fac to r i ngRu les . add (new ViewHolderRefactor ingRule (logger)) ;

36 re fac to r i ngRu les . add (new DrawAl loca t ionRefac tor ingRule (logger)) ;

37 re fac to r i ngRu les . add (new WakeLockRefactoringRule (logger)) ;

38

39 / / Run the group of comp i la t i on u n i t s w i th the set o f r e f a c t o r i n g ru l es

40 compi la t ionUni tGroup . r u n I n I s o l a t i o n (re fac to r i ngRu les) ;

41 }

42

43 @TaskAction

44 p u b l i c vo id task () throws IOExcept ion {

45 AppExtension appExtension = getAppExtension () ;

46 i f (launcherExtension . isUsingClasspath ()) {

47 DependenciesManager dependenciesManager = new DependenciesManager (appExtension , p r o j e c t) ;

48 i t e r a t e O v e r A p p l i c a t i o n V a r i a n t s (appExtension , dependenciesManager) ;

49 } else {

50 processWithoutClassPath () ;

51 }

52 }

53 }

Listing A.3: The DrawAllocationRefactoringRule class
1 . . .

2 p u b l i c c lass DrawAl loca t ionRefac tor ingRule extends AbstractProcessor<CtClass> implements Refactor ingRule<CtClass> {

3 p r i v a t e I t e r a t i o n L o g g e r logger ;

4

5 p u b l i c DrawAl loca t ionRefac tor ingRule (I t e r a t i o n L o g g e r logger) {

6 t h i s . logger = logger ;

7 }

8

9 p r i v a t e boolean methodSignatureMatches (CtMethod method) {

10 / / SIGNATURE:

11 / / p u b l i c vo id onDraw (Canvas canvas)

58

12 boolean nameMatch = method . getSimpleName () . equals (” onDraw ”) ;

13 CtTypeReference type = method . getType () ;

14 boolean returnTypeMatch = type != n u l l && type . getSimpleName () . equals (” vo id ”) ;

15

16 boolean hasSameNumberOfArguments = method . getParameters () . s i ze () == 1;

17 i f (hasSameNumberOfArguments) {

18 L i s t parameterL is t = method . getParameters () ;

19

20 CtTypeReference f i rs tArgumentType = ((CtParameter) parameterL is t . get (0)) . getType () ;

21 boolean f i rstArgumentTypeMatches = f i rs tArgumentType . getSimpleName () . endsWith (” Canvas ”) ;

22

23 r e t u r n nameMatch &&

24 returnTypeMatch &&

25 f irstArgumentTypeMatches ;

26 }

27

28 r e t u r n f a l s e ;

29 }

30

31 @Override

32 p u b l i c vo id detectCase (Detect ionPhaseContext con tex t) {

33 / / Detect ob jec t a l l o c a t i o n s

34 O b j e c tA l l o c a t i o n o b j e c t A l l o c a t i o n = O b je c t A l l oc a t i o n . de tec t (con tex t) ;

35 i f (o b j e c t A l l o c a t i o n != n u l l) {

36 contex t . c a s e O f I n t e r e s t L i s t . add (o b j e c t A l l o c a t i o n) ;

37 }

38 }

39

40 @Override

41 p u b l i c vo id transformCase (TransformationPhaseContext con tex t) {

42 CaseTransformer . createPassThroughTransformation () . transformCase (con tex t) ;

43 }

44

45 @Override

46 p u b l i c vo id re factorCase (Refactor ingPhaseContext con tex t) {

47 i f (con tex t . caseOf In te res t i ns tanceo f O b je c t A l l oc a t i o n) {

48 O b j e c tA l l o c a t i o n o b j e c t A l l o c a t i o n = (O b j ec t A l l o ca t i o n) con tex t . caseOf In te res t ;

49 i f (o b j e c t A l l o c a t i o n . getStatement () i ns tanceo f CtVar iab le) {

50 / / We are dec la r i ng a var iab le , p u l l the d e c l a r a t i o n out o f the scope .

51 CtClass ctClass = Refactor ingRule . getClosestClassParent (con tex t . b lock) ;

52 i f (c tC lass == n u l l) {

53 r e t u r n ;

54 }

55 / / Check i f the f i e l d i s ins ide , c reate i t i f necessary

56 L i s t<CtFie ld<?>> f i e l d s = ctClass . ge tF ie l ds () ;

57 Opt ional<CtFie ld<?>> o p t i o n a l F i e l d = f i e l d s . stream () . f i l t e r (f i e l d -> f i e l d . getSimpleName ()

58 . equals (o b j e c t A l l o c a t i o n . v a r i a b l e . getSimpleName ())) . f i n d F i r s t () ;

59 i f (o p t i o n a l F i e l d . i sPresen t () && ! o p t i o n a l F i e l d . get () . getType () . getSimpleName ()

60 . equals (o b j e c t A l l o c a t i o n . v a r i a b l e . getType () . getSimpleName ())) {

61 / / I f types do not match we ignore f o r now .

62 r e t u r n ;

63 }

64 i f (! o p t i o n a l F i e l d . i sPresen t ()) {

65 CtTypeReference typeReference = o b j e c t A l l o c a t i o n . v a r i a b l e . getType () ;

66 CtF ie ld f i e l d = ctClass . getFactory () . c rea teC tF ie ld (o b j e c t A l l o c a t i o n . v a r i a b l e . getSimpleName () , typeReference ,

67 o b j e c t A l l o c a t i o n . c o n s t r u c t o r C a l l . t o S t r i n g () , Mod i f i e rK ind . PRIVATE) ;

68 ctClass . addFie ld (f i e l d) ;

69

70 i f (O b je c tA l l oc a t i o n . i sC lea rab le (typeReference)) {

71 o b j e c t A l l o c a t i o n . getStatement () . i n se r tBe fo re (

72 ctClass . getFactory () . createCodeSnippetStatement (

73 o b j e c t A l l o c a t i o n . v a r i a b l e . getSimpleName () + ” . c l ea r () ”)) ;

74 }

75 contex t . b lock . removeStatement (o b j e c t A l l o c a t i o n . getStatement ()) ;

76 }

77 }

78 }

79 }

80

81 p r i v a t e vo id r e f a c t o r (CtMethod method) {

59

82 i f (! methodSignatureMatches (method)) {

83 r e t u r n ;

84 }

85 L i s t<CtBlock> blocks = Refactor ingRule . ge tCtE lementsOf In teres t (method , CtBlock . c lass : : i s Ins tance , CtBlock . c lass) ;

86 f o r (CtBlock block : b locks) {

87 I t e r a b l e . i t e r a t e B l o c k (t h i s , logger , block , fa l se , 0) ;

88 }

89 }

90

91 p u b l i c vo id process (CtClass element) {

92 Set methods = element . getMethods () ;

93 f o r (Object method : methods) {

94 i f (method ins tanceo f CtMethod) {

95 r e f a c t o r ((CtMethod) method) ;

96 }

97 }

98 }

99 . . .

100 }

Listing A.4: The RecycleRefactoringRule class
1 . . .

2 p u b l i c c lass RecycleRefactor ingRule extends AbstractProcessor<CtClass> implements Refactor ingRule<CtClass> {

3 / / L i s t o f c lasses t h a t need to be recyc led

4 p r i v a t e Map<St r ing , S t r ing> o p p o r t u n i t i e s = new LinkedHashMap<>();

5 p r i v a t e I t e r a t i o n L o g g e r logger ;

6

7 p u b l i c RecycleRefactor ingRule (I t e r a t i o n L o g g e r logger) {

8 t h i s . logger = logger ;

9 / / todo - Should de tec t w i th the f u l l namespace .

10 o p p o r t u n i t i e s . put (” TypedArray ” , ” recyc le ”) ;

11 o p p o r t u n i t i e s . put (” Bitmap ” , ” recyc le ”) ;

12 o p p o r t u n i t i e s . put (” Cursor ” , ” c lose ”) ;

13 o p p o r t u n i t i e s . put (” Ve loc i t yT racke r ” , ” recyc le ”) ;

14 o p p o r t u n i t i e s . put (” Message ” , ” recyc le ”) ;

15 o p p o r t u n i t i e s . put (” MotionEvent ” , ” recyc le ”) ;

16 o p p o r t u n i t i e s . put (” Parcel ” , ” recyc le ”) ;

17 o p p o r t u n i t i e s . put (” Con ten tProv ide rC l ien t ” , ” re lease ”) ;

18 }

19

20 @Override

21 p u b l i c vo id detectCase (Detect ionPhaseContext con tex t) {

22 / / Detect v a r i a b l e s declared

23 Var iab leDeclared var iab leDec la red = Var iab leDec lared . de tec t (con tex t) ;

24 i f (va r iab leDec la red != n u l l) {

25 S t r i n g typeName = var iab leDec la red . v a r i a b l e . getType () . getSimpleName () ;

26 i f (o p p o r t u n i t i e s . containsKey (typeName)) {

27 contex t . c a s e O f I n t e r e s t L i s t . add (var iab leDec la red) ;

28 }

29 }

30 / / Detect v a r i a b l e s reassigned

31 VariableReassigned var iableReassigned = VariableReassigned . de tec t (con tex t) ;

32 i f (var iableReassigned != n u l l) {

33 CtExpression lhs = var iableReassigned . assignment . getAssigned () ;

34 i f (l hs ins tanceo f CtVar iab leWr i te) {

35 contex t . c a s e O f I n t e r e s t L i s t . add (var iableReassigned) ;

36 }

37 }

38 / / Detect v a r i a b l e s usage

39 VariableUsed var iableUsed = VariableUsed . de tec t (con tex t) ;

40 i f (var iableUsed != n u l l) {

41 contex t . c a s e O f I n t e r e s t L i s t . add (var iableUsed) ;

42 }

43 / / Detect l o s t v a r i a b l e s

44 Var iab leLos t va r i ab l eLos t = Var iab leLos t . de tec t (con tex t) ;

60

45 i f (va r i ab l eLos t != n u l l) {

46 contex t . c a s e O f I n t e r e s t L i s t . add (va r i a b l eLos t) ;

47 }

48

49 / / Detect recyc led v a r i a b l e s

50 Var iableRecycled var iab leRecyc led = Var iableRecycled . de tec t (context , o p p o r t u n i t i e s) ;

51 i f (var iab leRecyc led != n u l l) {

52 contex t . c a s e O f I n t e r e s t L i s t . add (var iab leRecyc led) ;

53 }

54 }

55

56 @Override

57 p u b l i c vo id transformCase (TransformationPhaseContext con tex t) {

58 L i s t<Var iableDeclared> v a r i a b l e s = contex t . c a s e O f I n t e r e s t L i s t . stream ()

59 . f i l t e r (Var iab leDec lared . c lass : : i s I ns tance)

60 .map(Var iab leDec lared . c lass : : cast) . c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

61 i f (con tex t . caseOf In te res t i ns tanceo f VariableUsed) {

62 / / F i l t e r i n g cons ider ing the va r i a b l e s declared

63 VariableUsed var iableUsed = (VariableUsed) con tex t . caseOf In te res t ;

64 boolean i n t e r e s t i n g = v a r i a b l e s . stream () . anyMatch (var iab leDec la red -> var iableUsed . var iab leAccesses . stream ()

65 . anyMatch (c tVar iab leAccess -> ctVar iab leAccess . ge tVar iab le () . getSimpleName ()

66 . equals (var iab leDec la red . v a r i a b l e . getSimpleName ()))) ;

67 i f (i n t e r e s t i n g) {

68 contex t . accept (con tex t . caseOf In te res t) ;

69 }

70 } else i f (con tex t . caseOf In te res t i ns tanceo f VariableReassigned) {

71 / / F i l t e r i n g cons ider ing the va r i a b l e s declared

72 VariableReassigned var iableReassigned = (VariableReassigned) con tex t . caseOf In te res t ;

73 boolean i n t e r e s t i n g = v a r i a b l e s . stream () . anyMatch (var iab leDec la red -> {

74 CtExpression assigned = var iableReassigned . assignment . getAssigned () ;

75 r e t u r n (assigned ins tanceo f CtVar iab leWr i te &&

76 ((CtVar iab leWr i te) assigned) . ge tVar iab le () . getSimpleName ()

77 . equals (var iab leDec la red . v a r i a b l e . getSimpleName ())) ;

78 }) ;

79 i f (i n t e r e s t i n g) {

80 contex t . accept (con tex t . caseOf In te res t) ;

81 }

82 } else {

83 CaseTransformer . createPassThroughTransformation () . transformCase (con tex t) ;

84 }

85 }

86

87 p r i v a t e L i s t<CaseOfInterest> getCasesByVariableName (S t r i n g variableName , L i s t<CaseOfInterest> caseOf In te res ts) {

88 r e t u r n caseOf In te res ts . stream () . f i l t e r (caseOf In te res t -> {

89 i f (caseOf In te res t i ns tanceo f Var iab leDec lared) {

90 r e t u r n ((Var iab leDec lared) caseOf In te res t) . v a r i a b l e . getSimpleName () . equals (variableName) ;

91 } else i f (caseOf In te res t i ns tanceo f VariableReassigned) {

92 CtExpression assigned = ((VariableReassigned) caseOf In te res t) . assignment . getAssigned () ;

93 i f (assigned ins tanceo f CtVar iab leWr i te) {

94 r e t u r n ((C tVar iab leWr i te) assigned) . ge tVar iab le () . getSimpleName () . equals (variableName) ;

95 }

96 } else i f (caseOf In te res t i ns tanceo f VariableUsed) {

97 r e t u r n ((VariableUsed) caseOf In te res t) . var iableAccesses . stream ()

98 . anyMatch (c tVar iab leAccess -> ctVar iab leAccess . ge tVar iab le () . getSimpleName ()

99 . equals (variableName)) ;

100 } else i f (caseOf In te res t i ns tanceo f Var iab leLos t) {

101 r e t u r n ((Var iab leLos t) caseOf In te res t) . var iableAccesses . stream ()

102 . anyMatch (c tVar iab leAccess -> ctVar iab leAccess . ge tVar iab le () . getSimpleName ()

103 . equals (variableName)) ;

104 } else i f (caseOf In te res t i ns tanceo f Var iableRecycled) {

105 r e t u r n ((Var iableRecycled) caseOf In te res t) . var iableAccesses . stream ()

106 . anyMatch (c tVar iab leAccess -> ctVar iab leAccess . ge tVar iab le () . getSimpleName ()

107 . equals (variableName)) ;

108 }

109 r e t u r n f a l s e ;

110 }) . c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

111 }

112

113 p r i v a t e S t r i n g getTypeByVariableName (S t r i n g variableName , L i s t<CaseOfInterest> caseOf In te res ts) {

114 Opt ional<Var iableDeclared> match = caseOf In te res ts . stream () . f i l t e r (Var iab leDeclared . c lass : : i s I ns tance)

61

115 .map(Var iab leDeclared . c lass : : cast)

116 . f i l t e r (va r iab leDec la red -> var iab leDec la red . v a r i a b l e . getSimpleName () . equals (variableName))

117 . f i n d F i r s t () ;

118 i f (! match . i sPresen t ()) {

119 r e t u r n n u l l ;

120 }

121 r e t u r n match . get () . v a r i a b l e . getType () . getSimpleName () ;

122 }

123

124 p r i v a t e boolean isVar iab leUnderCont ro l (S t r i n g variableName , Refactor ingPhaseContext con tex t) {

125 L i s t<CaseOfInterest> f i l t e r e d = getCasesByVariableName (variableName , contex t . casesOf In te res t) ;

126 / / NOTE: Only check up to t h i s po in t i n the phase

127 f i l t e r e d = f i l t e r e d . stream ()

128 . f i l t e r (Var iab leLos t . c lass : : i s I ns tance)

129 .map(Var iab leLos t . c lass : : cast)

130 . f i l t e r (v a r i ab l eLos t -> va r i ab l eLo s t . getStatementIndex () < contex t . caseOf In te res t . getStatementIndex ())

131 . c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

132 r e t u r n f i l t e r e d . s ize () == 0;

133 }

134

135 p r i v a t e boolean wasVariableRecycled (S t r i n g variableName , Refactor ingPhaseContext con tex t) {

136 L i s t<CaseOfInterest> f i l t e r e d = getCasesByVariableName (variableName , contex t . casesOf In te res t) ;

137 i n t index = f i l t e r e d . indexOf (con tex t . caseOf In te res t) ;

138 i f (con tex t . caseOf In te res t i ns tanceo f VariableReassigned) {

139 / / We do not want to cons ider t h i s case of i n t e r e s t

140 index - - ;

141 }

142 f i l t e r e d = f i l t e r e d . subL is t (0 , index) ;

143 f o r (i n t i = f i l t e r e d . s ize () - 1 ; i >= 0; i - -) {

144 CaseOfInterest cu r ren t = f i l t e r e d . get (i) ;

145 / / NOTE: Only check up to t h i s po in t i n the phase and a f t e r the l a s t d e c l a r a t i o n or r e d e c l a r a t i o n o f t h i s v a r i a b l e

146 i f (cu r ren t i ns tanceo f VariableReassigned || cu r ren t i ns tanceo f Var iab leDeclared) {

147 break ;

148 } else i f (cu r ren t i ns tanceo f Var iableRecycled) {

149 r e t u r n t rue ;

150 }

151 }

152 r e t u r n f a l s e ;

153 }

154

155 p r i v a t e vo id recyc leVar iab leDec la red (Refactor ingPhaseContext con tex t) {

156 i f (! (con tex t . caseOf In te res t i ns tanceo f Var iab leDec lared)) {

157 r e t u r n ;

158 }

159 Var iab leDeclared var iab leDec la red = (Var iab leDec lared) con tex t . caseOf In te res t ;

160 S t r i n g variableName = var iab leDec la red . v a r i a b l e . getSimpleName () ;

161 S t r i n g typeName = o p p o r t u n i t i e s . get (getTypeByVariableName (variableName , contex t . casesOf In te res t)) ;

162 i f (typeName == n u l l) {

163 r e t u r n ;

164 }

165 L i s t<CaseOfInterest> casesOf In te res t = getCasesByVariableName (variableName , contex t . casesOf In te res t) ; / / TODO - EXCLUDE RETURN STATEMENTS

166 boolean i s L a s t = casesOf In te res t . get (casesOf In te res t . s i ze () - 1) . equals (con tex t . caseOf In te res t) ;

167 i f (! i s L a s t) {

168 r e t u r n ;

169 }

170 Factory f a c t o r y = contex t . caseOf In te res t . getStatement () . getFactory () ;

171 C t I f c t I f = f a c t o r y . c r e a t e I f () ;

172 CtBlock c tB lock = f a c t o r y . c reateBlock () ;

173 c tB lock . addStatement (f a c t o r y

174 . createCodeSnippetStatement (S t r i n g . format (”%s.%s () ” , variableName , typeName))) ;

175 c t I f . setThenStatement (c tB lock) ;

176 c t I f . se tCond i t i on (f a c t o r y

177 . createCodeSnippetExpression (S t r i n g . format (”%s != n u l l ” , variableName))) ;

178 contex t . caseOf In te res t . getStatement () . i n s e r t A f t e r (c t I f) ;

179 }

180

181 p r i v a t e vo id recyc leVar iab leReass igned (Refactor ingPhaseContext con tex t) {

182 i f (! (con tex t . caseOf In te res t i ns tanceo f VariableReassigned)) {

183 r e t u r n ;

184 }

62

185 / / We cons ider reass igns because there could be no usage i n between Dec la ra t ions and Reassignments

186 CtExpression assigned = ((VariableReassigned) con tex t . caseOf In te res t) . assignment . getAssigned () ;

187 i f (assigned ins tanceo f CtVar iab leWr i te) {

188 S t r i n g variableName = ((CtVar iab leWr i te) assigned) . ge tVar iab le () . getSimpleName () ;

189 S t r i n g typeName = o p p o r t u n i t i e s . get (getTypeByVariableName (variableName , contex t . casesOf In te res t)) ;

190 i f (typeName == n u l l) {

191 r e t u r n ;

192 }

193

194 boolean wasVariableRecycled = wasVariableRecycled (variableName , contex t) ;

195 i f (wasVariableRecycled) {

196 r e t u r n ;

197 }

198

199 boolean i s I n C o n t r o l = isVar iab leUnderCont ro l (variableName , contex t) ;

200 i f (! i s I n C o n t r o l) {

201 r e t u r n ;

202 }

203

204 Factory f a c t o r y = assigned . getFactory () ;

205 C t I f c t I f 2 = f a c t o r y . c r e a t e I f () ;

206 CtBlock ctB lock2 = f a c t o r y . c reateBlock () ;

207 ctBlock2 . addStatement (f a c t o r y

208 . createCodeSnippetStatement (S t r i n g . format (”%s.%s () ” , variableName , typeName))) ;

209 c t I f 2 . setThenStatement (c tB lock2) ;

210 c t I f 2 . se tCond i t i on (f a c t o r y

211 . createCodeSnippetExpression (S t r i n g . format (”%s != n u l l ” , variableName))) ;

212 contex t . caseOf In te res t . getStatement () . i n se r tBe fo r e (c t I f 2) ;

213

214

215 L i s t<CaseOfInterest> casesOf In te res t = getCasesByVariableName (variableName , contex t . casesOf In te res t) ;

216 boolean i s L a s t = casesOf In te res t . get (casesOf In te res t . s i ze () - 1) . equals (con tex t . caseOf In te res t) ;

217 i f (! i s L a s t) {

218 r e t u r n ;

219 }

220

221 C t I f c t I f = f a c t o r y . c r e a t e I f () ;

222 CtBlock c tB lock = f a c t o r y . c reateBlock () ;

223 c tB lock . addStatement (f a c t o r y

224 . createCodeSnippetStatement (S t r i n g . format (”%s.%s () ” , variableName , typeName))) ;

225 c t I f . setThenStatement (c tB lock) ;

226 c t I f . se tCond i t i on (f a c t o r y

227 . createCodeSnippetExpression (S t r i n g . format (”%s != n u l l ” , variableName))) ;

228 contex t . caseOf In te res t . getStatement () . i n s e r t A f t e r (c t I f) ;

229

230

231 }

232 }

233

234 p r i v a t e vo id recyc leVar iab leUsed (Refactor ingPhaseContext con tex t) {

235 i f (! (con tex t . caseOf In te res t i ns tanceo f VariableUsed)) {

236 r e t u r n ;

237 }

238 L i s t<CtVariableAccess> var iableAccesses = ((VariableUsed) con tex t . caseOf In te res t) . var iableAccesses ;

239 Set<St r ing> alreadyRecycles = new HashSet<>();

240 var iableAccesses . forEach (c tVar iab leAccess -> {

241 S t r i n g variableName = ctVar iab leAccess . ge tVar iab le () . getSimpleName () ;

242

243 i f (a l readyRecycles . conta ins (variableName)) {

244 r e t u r n ;

245 }

246

247 S t r i n g typeName = o p p o r t u n i t i e s . get (getTypeByVariableName (variableName , contex t . casesOf In te res t)) ;

248 i f (typeName == n u l l) {

249 r e t u r n ;

250 }

251 L i s t<CaseOfInterest> casesOf In te res t = getCasesByVariableName (variableName , contex t . casesOf In te res t) ;

252 boolean i s L a s t = casesOf In te res t . get (casesOf In te res t . s i ze () - 1) . equals (con tex t . caseOf In te res t) ;

253 i f (! i s L a s t) {

254 r e t u r n ;

63

255 }

256 boolean wasVariableRecycled = wasVariableRecycled (variableName , contex t) ;

257 i f (wasVariableRecycled) {

258 r e t u r n ;

259 }

260

261 boolean i s I n C o n t r o l = isVar iab leUnderCont ro l (variableName , contex t) ;

262 i f (! i s I n C o n t r o l) {

263 r e t u r n ;

264 }

265

266 Factory f a c t o r y = ctVar iab leAccess . getFactory () ;

267 C t I f c t I f = f a c t o r y . c r e a t e I f () ;

268 CtBlock c tB lock = f a c t o r y . c reateBlock () ;

269 c tB lock . addStatement (f a c t o r y

270 . createCodeSnippetStatement (S t r i n g . format (”%s.%s () ” , variableName , typeName))) ;

271 c t I f . setThenStatement (c tB lock) ;

272 c t I f . se tCond i t i on (f a c t o r y

273 . createCodeSnippetExpression (S t r i n g . format (”%s != n u l l ” , variableName))) ;

274 contex t . caseOf In te res t . getStatement () . i n s e r t A f t e r (c t I f) ;

275 alreadyRecycles . add (variableName) ;

276 }) ;

277 }

278

279 @Override

280 p u b l i c vo id re factorCase (Refactor ingPhaseContext con tex t) {

281 / / System . out . p r i n t l n (”BEFORE: ” + contex t . b lock . toStr ingDebug ()) ;

282 recyc leVar iab leDec la red (con tex t) ;

283 recyc leVar iab leReass igned (con tex t) ;

284 recyc leVar iab leUsed (con tex t) ;

285 / / System . out . p r i n t l n (”AFTER: ” + contex t . b lock . toStr ingDebug ()) ;

286 }

287

288 p r i v a t e vo id r e f a c t o r (CtMethod method) {

289 L i s t<CtBlock> blocks = Refactor ingRule . ge tCtE lementsOf In teres t (method , CtBlock . c lass : : i s Ins tance , CtBlock . c lass) ;

290 f o r (CtBlock block : b locks) {

291 I t e r a b l e . i t e r a t e B l o c k (t h i s , logger , block , fa l se , 0) ;

292 }

293 }

294

295 p u b l i c vo id process (CtClass element) {

296 Set methods = element . getMethods () ;

297 f o r (Object method : methods) {

298 i f (method ins tanceo f CtMethod) {

299 r e f a c t o r ((CtMethod) method) ;

300 }

301 }

302 }

303 . . .

304 }

Listing A.5: The ViewHolderRefactoringRule class
1 . . .

2 p u b l i c c lass ViewHolderRefactor ingRule extends AbstractProcessor<CtClass> implements Refactor ingRule<CtClass> {

3

4 p r i v a t e I t e r a t i o n L o g g e r logger ;

5

6 p u b l i c ViewHolderRefactor ingRule (I t e r a t i o n L o g g e r logger) {

7 t h i s . logger = logger ;

8 }

9

10 p r i v a t e c lass Refactor ingPhaseExtra {

11 S t r i n g viewVariableName = n u l l ;

12 S t r i n g argumentName = n u l l ;

13 Factory f a c t o r y = n u l l ;

64

14 boolean conve r tV iew In f l a ted = f a l s e ; / / I f t r ue the convertView i s p rope r l y n u l l checked and assigned the layou t

15 boolean hasViewHolderInstance = f a l s e ; / / I f t r ue a t t h i s po in t there i s a v iewHolder Instance

16 boolean isPopula t ingViewHolder = f a l s e ; / / I f t r ue there i s a co n d i t i o n f o r popu la t ing the viewHolder

17 boolean hasIfPreamble = f a l s e ;

18 boolean hasI fS tmt = f a l s e ;

19 C t I f i f S t m t = n u l l ;

20 CtBlock thenBlock = n u l l ;

21 S t r i n g viewHolderInstanceName = ” viewHolderI tem ” ;

22

23 C t I f c rea te I fS ta tement (Refactor ingPhaseContext con tex t) {

24 C t I f i f S t m t = f a c t o r y . c r e a t e I f () ;

25

26 i f S t m t . se tCond i t i on (f a c t o r y . createCodeSnippetExpression (S t r i n g . format (”%s == n u l l ” , t h i s . viewHolderInstanceName))) ;

27 CtStatement s t1 = f a c t o r y . createCodeSnippetStatement (S t r i n g . format (” v iewHolderI tem = new ViewHolderItem () ” , t h i s .

viewHolderInstanceName)) ;

28 CtStatement s t2 = f a c t o r y . createCodeSnippetStatement (S t r i n g . format (”%s . setTag (viewHolderI tem) ” , argumentName)) ;

29

30 CtBlock thenBlock = f a c t o r y . c reateBlock () ;

31 thenBlock . addStatement (s t1) ;

32 thenBlock . addStatement (s t2) ;

33 i f S t m t . setThenStatement (thenBlock) ;

34

35 t h i s . isPopula t ingViewHolder = t rue ;

36 t h i s . i f S t m t = i f S t m t ;

37 t h i s . thenBlock = thenBlock ;

38 t h i s . has I fS tmt = t rue ;

39

40 r e t u r n i f S t m t ;

41 }

42 }

43

44 @Override

45 p u b l i c vo id detectCase (Detect ionPhaseContext con tex t) {

46 Var iab leDeclared var iab leDec la red = Var iab leDec lared . de tec t (con tex t) ;

47 i f (va r iab leDec la red != n u l l) {

48 contex t . c a s e O f I n t e r e s t L i s t . add (var iab leDec la red) ;

49 }

50 Conver tV iewReass ignIn f la tor conver tV iewReass ign In f la to r = Conver tV iewReass ignIn f la tor . de tec t (con tex t) ;

51 i f (conver tV iewReass ign In f la to r != n u l l) {

52 contex t . c a s e O f I n t e r e s t L i s t . add (conver tV iewReass ign In f la to r) ;

53 }

54 ConvertViewReuseWithTernary convertViewReuseWithTernary = ConvertViewReuseWithTernary . de tec t (con tex t) ;

55 i f (convertViewReuseWithTernary != n u l l) {

56 contex t . c a s e O f I n t e r e s t L i s t . add (convertViewReuseWithTernary) ;

57 }

58 VariableAssignedGetTag variableAssignedGetTag = VariableAssignedGetTag . de tec t (con tex t) ;

59 i f (var iableAssignedGetTag != n u l l) {

60 contex t . c a s e O f I n t e r e s t L i s t . add (var iableAssignedGetTag) ;

61 }

62 VariableAssignedFindViewById var iableAssignedFindViewById = VariableAssignedFindViewById . de tec t (con tex t) ;

63 i f (var iableAssignedFindViewById != n u l l) {

64 contex t . c a s e O f I n t e r e s t L i s t . add (var iableAssignedFindViewById) ;

65 }

66 V a r i a b l e A s s i g n e d I n f l a t o r v a r i a b l e A s s i g n e d I n f l a t o r = V a r i a b l e A s s i g n e d I n f l a t o r . de tec t (con tex t) ;

67 i f (v a r i a b l e A s s i g n e d I n f l a t o r != n u l l) {

68 contex t . c a s e O f I n t e r e s t L i s t . add (v a r i a b l e A s s i g n e d I n f l a t o r) ;

69 }

70 Var iab leCheckNul l var iab leCheckNul l = Var iab leCheckNul l . de tec t (con tex t) ;

71 i f (var iab leCheckNul l != n u l l) {

72 contex t . c a s e O f I n t e r e s t L i s t . add (var iab leCheckNul l) ;

73 }

74 }

75

76 @Override

77 p u b l i c vo id transformCase (TransformationPhaseContext con tex t) {

78 / / No need f o r t rans fo rma t ions i n t h i s case

79 CaseTransformer . createPassThroughTransformation () . transformCase (con tex t) ;

80 }

81

82 @Override

65

83 p u b l i c vo id re factorCase (Refactor ingPhaseContext con tex t) {

84 / / Var iab les f o r eas ie r access

85 Refactor ingPhaseExtra ex t ra = (Refactor ingPhaseExtra) con tex t . ex t ra ;

86

87 i f (con tex t . caseOf In te res t i ns tanceo f V a r i a b l e A s s i g n e d I n f l a t o r) {

88 / / In t h i s case we want to check where the i n f l a t e d view i s s tored

89 V a r i a b l e A s s i g n e d I n f l a t o r v a r i a b l e A s s i g n e d I n f l a t o r = (V a r i a b l e A s s i g n e d I n f l a t o r) con tex t . caseOf In te res t ;

90 i f (v a r i a b l e A s s i g n e d I n f l a t o r . v a r i a b l e . getSimpleName () . equals (ex t ra . argumentName)) {

91 r e t u r n ;

92 }

93 CtCond i t i ona l c o n d i t i o n a l = ex t ra . f a c t o r y . c rea teCond i t i ona l () ;

94 c o n d i t i o n a l . se tCond i t i on (ex t ra . f a c t o r y . createCodeSnippetExpression (ex t ra . argumentName + ” == n u l l ”)) ;

95 c o n d i t i o n a l . setElseExpress ion (ex t ra . f a c t o r y . createCodeSnippetExpression (ex t ra . argumentName)) ;

96 i f (v a r i a b l e A s s i g n e d I n f l a t o r . getStatement () i ns tanceo f CtVar iab le) {

97 CtVar iab le v a r i a b l e = ((CtVar iab le) v a r i a b l e A s s i g n e d I n f l a t o r . getStatement ()) ;

98 c o n d i t i o n a l . setThenExpression (v a r i a b l e . ge tDefau l tExpress ion ()) ;

99 v a r i a b l e . se tDefau l tExpress ion (c o n d i t i o n a l) ;

100 } else i f (v a r i a b l e A s s i g n e d I n f l a t o r . getStatement () i ns tanceo f CtAssignment) {

101 CtAssignment assignment = (CtAssignment) v a r i a b l e A s s i g n e d I n f l a t o r . getStatement () ;

102 c o n d i t i o n a l . setThenExpression (assignment . getAssignment ()) ;

103 assignment . setAssignment (c o n d i t i o n a l) ;

104 }

105 ex t ra . viewVariableName = v a r i a b l e A s s i g n e d I n f l a t o r . v a r i a b l e . getSimpleName () ;

106 ex t ra . conve r tV iew In f l a ted = t rue ;

107 } else i f (con tex t . caseOf In te res t i ns tanceo f Conver tV iewReass ignIn f la tor) {

108 Conver tV iewReass ign In f la tor conver tV iewReass ign In f la to r = (Conver tV iewReass ignIn f la tor) con tex t . caseOf In te res t ;

109 CtExpression assignment = conver tV iewReass ign In f la to r . assignment . getAssignment () ;

110 CtCond i t i ona l c o n d i t i o n a l = ex t ra . f a c t o r y . c rea teCond i t i ona l () ;

111 c o n d i t i o n a l . se tCond i t i on (ex t ra . f a c t o r y . createCodeSnippetExpression (ex t ra . argumentName + ” == n u l l ”)) ;

112 c o n d i t i o n a l . setThenExpression (assignment) ;

113 c o n d i t i o n a l . setElseExpress ion (ex t ra . f a c t o r y . createCodeSnippetExpression (ex t ra . argumentName)) ;

114 conver tV iewReass ign In f la to r . assignment . setAssignment (c o n d i t i o n a l) ;

115 ex t ra . viewVariableName = ex t ra . argumentName ;

116 ex t ra . conve r tV iew In f l a ted = t rue ;

117 } else i f (con tex t . caseOf In te res t i ns tanceo f ConvertViewReuseWithTernary) {

118 / / In t h i s case every th ing i s we l l no need to worry about the convertView anymore .

119 ex t ra . viewVariableName = ex t ra . argumentName ;

120 ex t ra . conve r tV iew In f l a ted = t rue ;

121 } else i f (con tex t . caseOf In te res t i ns tanceo f VariableAssignedGetTag) {

122 / / In t h i s case we want to check the name of the v iewHolder Instance

123 VariableAssignedGetTag variableAssignedGetTag = (VariableAssignedGetTag) con tex t . caseOf In te res t ;

124 ex t ra . viewHolderInstanceName = variableAssignedGetTag . v a r i a b l e . getSimpleName () ;

125 ex t ra . hasViewHolderInstance = t rue ;

126 } else i f (con tex t . caseOf In te res t i ns tanceo f Var iab leCheckNul l) {

127 Var iab leCheckNul l var iab leCheckNul l = (Var iab leCheckNul l) con tex t . caseOf In te res t ;

128 i f (var iab leCheckNul l . v a r i a b l e . getSimpleName () . equals (ex t ra . viewHolderInstanceName)) {

129 ex t ra . has I fS tmt = t rue ;

130 ex t ra . i f S t m t = var iab leCheckNul l . i f S t m t ;

131 ex t ra . thenBlock = var iab leCheckNul l . i f S t m t . getThenStatement () ;

132 }

133 } else i f (con tex t . caseOf In te res t i ns tanceo f Var iableAssignedFindViewById && ex t ra . conve r tV iew In f l a ted) { / / The conver t view must be

i n f l a t e d otherwise we do not want any changes

134 VariableAssignedFindViewById var iableAssignedFindViewById = (Var iableAssignedFindViewById) con tex t . caseOf In te res t ;

135 / / Find the Class t h a t conta ins t h i s case

136 CtClass rootC lass = Refactor ingRule . getClosestClassParent (var iableAssignedFindViewById . getStatement ()) ;

137 / / Find every inne r c lass i n s i d e the roo t c lass t h a t matches the viewHolder d e s c r i p t i o n

138 L i s t<CtClass> viewHolderI temClasses = Refactor ingRule . ge tCtE lementsOf In teres t (rootClass , node -> {

139 / / TODO - We have a s i t u a t i o n where c lass could be declared i n s i d e another inner class , we should search only narrowly

140 i f (node ins tanceo f CtClass) {

141 CtClass ctClass = (CtClass) node ;

142 / / boolean i s S t a t i c = c l assOr In te r f aceDec la ra t i on . i s S t a t i c () ;

143 r e t u r n ctClass . getSimpleName () . equals (” ViewHolderItem ”) ;

144 }

145 r e t u r n f a l s e ;

146 } , CtClass . c lass) ;

147 CtClass ctClass ;

148 i f (v iewHolderI temClasses . s ize () == 0) {

149 / / There i sn ' t a viewHolder - Create i t w i th the f i e l d i n s i d e i t

150 ctClass = ex t ra . f a c t o r y . createClass (” ViewHolderItem ”) ;

151 ctClass . addModi f ie r (Mod i f i e rK ind . STATIC) ;

66

152 CtTypeReference typeReference = var iableAssignedFindViewById . v a r i a b l e . getType () ;

153 CtF ie ld f i e l d = ex t ra . f a c t o r y . c rea teC tF ie ld (var iableAssignedFindViewById . v a r i a b l e . getSimpleName () , typeReference ,

154 ” n u l l ” , Mod i f i e rK ind . PUBLIC) ;

155 ctClass . addTypeMember (f i e l d) ;

156 CtMethod method = Refactor ingRule . getClosestMethodParent (var iableAssignedFindViewById . getStatement ()) ;

157 i n t methodIndex = rootC lass . getTypeMembers () . indexOf (method) ;

158 rootClass . addTypeMemberAt (methodIndex , c tC lass) ;

159 } else {

160 / / There i s a viewHolder - Check i f the f i e l d i s ins ide , c reate i t i f necessary

161 ctClass = viewHolderI temClasses . get (0) ;

162 L i s t<CtFie ld<?>> f i e l d s = ctClass . ge tF ie l ds () ;

163 Opt ional<CtFie ld<?>> o p t i o n a l F i e l d = f i e l d s . stream () . f i l t e r (f i e l d -> f i e l d . getSimpleName ()

164 . equals (var iableAssignedFindViewById . v a r i a b l e . getSimpleName ())) . f i n d F i r s t () ;

165 i f (o p t i o n a l F i e l d . i sPresen t () && ! o p t i o n a l F i e l d . get () . getType () . getSimpleName ()

166 . equals (var iableAssignedFindViewById . v a r i a b l e . getType () . getSimpleName ())) {

167 / / I f types do not match we ignore f o r now .

168 r e t u r n ;

169 }

170 i f (! o p t i o n a l F i e l d . i sPresen t ()) {

171 CtTypeReference typeReference = var iableAssignedFindViewById . v a r i a b l e . getType () ;

172 CtF ie ld f i e l d = ex t ra . f a c t o r y . c rea teC tF ie ld (var iableAssignedFindViewById . v a r i a b l e . getSimpleName () , typeReference ,

173 ” n u l l ” , Mod i f i e rK ind . PUBLIC) ;

174 ctClass . addFie ld (f i e l d) ; / / TODO - P r i n t e r leaves a blank l i n e a f t e r the f i e l d .

175 }

176 }

177

178 / / MILESTONE: From t h i s po in t we know t h a t we have a ViewHolder c lass and a f i e l d v a r i a b l e matching the assigned v a r i a b l e

179

180 / / New v a r i a b l es f o r eas ie r access

181 Set<CtTypeReference<?>> ctTypeReferences = var iableAssignedFindViewById . resource . getReferencedTypes () ;

182

183 i f (! ex t ra . hasViewHolderInstance) {

184 / / Then we need to create i t .

185 / / Create a statement to get the viewHolder ins tance i f i t e x i s t s .

186 CtStatement newStatement1 = ex t ra . f a c t o r y . createCodeSnippetStatement (S t r i n g . format (

187 ” ViewHolderItem %s = (ViewHolderItem) %s . getTag () ” ,

188 ex t ra . viewHolderInstanceName , ex t ra . viewVariableName)) ;

189 i f (ex t ra . has I fS tmt) {

190 ex t ra . i f S t m t . i n se r t Be fo re (newStatement1) ;

191 } else {

192 contex t . caseOf In te res t . getStatement () . i n se r tBe fo r e (newStatement1) ;

193 }

194 ex t ra . hasViewHolderInstance = t rue ;

195 }

196

197 i f (! ex t ra . isPopula t ingViewHolder) {

198 / / We have reached t h i s po in t which means t h a t the there i s no i f statement f o r popu la t ing the ViewHolder

199 C t I f c t I f = ex t ra . c rea te I fS ta tement (con tex t) ;

200 contex t . caseOf In te res t . getStatement () . i n se r tBe fo r e (c t I f) ;

201 }

202

203 / / TODO - we need to check i f re fac to r ingPhaseExt ra . thenBlock a l ready populates the viewHolder , we don ' t want dup l i ca tes

204 i f (t r ue) {

205 System . out . p r i n t l n (” var iableAssignedFindViewById . resource - ” + var iableAssignedFindViewById . resource) ;

206 ex t ra . thenBlock . addStatement (ex t ra . f a c t o r y . createCodeSnippetStatement (

207 S t r i n g . format (”%s.%s = (TextView) %s . f indViewById(%s) ” ,

208 ex t ra . viewHolderInstanceName ,

209 var iableAssignedFindViewById . v a r i a b l e . getSimpleName () ,

210 ex t ra . viewVariableName , var iableAssignedFindViewById . resource . t o S t r i n g ()))) ;

211 }

212

213 / / Replace the assignment o f the v a r i a b l e w i th the ViewHolder f i e l d

214 CtStatement statement = var iableAssignedFindViewById . getStatement () ;

215 CtExpression assignmentExpression = ex t ra . f a c t o r y

216 . createCodeSnippetExpression (S t r i n g . format (”%s.%s ” ,

217 ex t ra . viewHolderInstanceName ,

218 var iableAssignedFindViewById . v a r i a b l e . getSimpleName ())) ;

219 i f (statement ins tanceo f CtVar iab le) {

220 CtVar iab le c t V a r i a b l e = ((CtVar iab le) statement) ;

221 c t V a r i a b l e . se tDefau l tExpress ion (assignmentExpression) ;

67

222 } else i f (statement ins tanceo f CtAssignment) {

223 CtAssignment assignment = ((CtAssignment) statement) ;

224 assignment . setAssignment (assignmentExpression) ;

225 }

226 }

227 }

228 @Override

229 p u b l i c vo id onWi l lRe fac to r (Refactor ingPhaseContext con tex t) {

230 / / Create a Refac to r ing phase ex t ra f o r data suppor t

231 Refactor ingPhaseExtra ex t ra = new Refactor ingPhaseExtra () ;

232 contex t . ex t ra = ex t ra ;

233 i f (con tex t . casesOf In te res t . s i ze () > 0) {

234 S t r i n g argumentName = ((CtParameter) Objects . requ i reNonNul l (

235 Refactor ingRule . getClosestMethodParent (con tex t . casesOf In te res t . get (0) . getStatement ()))

236 . getParameters () . get (1)) . getSimpleName () ;

237 Factory f a c t o r y = Objects . requ i reNonNul l (con tex t . b lock) . getFactory () ;

238 ex t ra . argumentName = argumentName ;

239 ex t ra . viewVariableName = argumentName ;

240 ex t ra . f a c t o r y = f a c t o r y ;

241 }

242 }

243

244 @Override

245 p u b l i c vo id process (CtClass element) {

246 Set methods = element . getMethods () ;

247 f o r (Object method : methods) {

248 i f (method ins tanceo f CtMethod) {

249 r e f a c t o r ((CtMethod) method) ;

250 }

251 }

252 }

253

254 p r i v a t e vo id r e f a c t o r (CtMethod method) {

255 i f (! methodSignatureMatches (method)) {

256 r e t u r n ;

257 }

258 I t e r a b l e . i te ra teMethod (t h i s , logger , method , f a l s e) ;

259 }

260

261 p r i v a t e boolean methodSignatureMatches (CtMethod method) {

262 / / SIGNATURE:

263 / / p u b l i c View getView (f i n a l i n t pos i t i on , f i n a l View convertView , f i n a l ViewGroup parent)

264 boolean nameMatch = method . getSimpleName () . equals (” getView ”) ;

265 CtTypeReference type = method . getType () ;

266 boolean returnTypeMatch = type . getSimpleName () . equals (” View ”) ;

267

268 boolean i s P u b l i c = method . ge tMod i f i e r s () . con ta ins (Mod i f i e rK ind . PUBLIC) ;

269 boolean hasSameNumberOfArguments = method . getParameters () . s i ze () == 3;

270 i f (hasSameNumberOfArguments) {

271 L i s t parameterL is t = method . getParameters () ;

272

273 CtTypeReference f i rs tArgumentType = ((CtParameter) parameterL is t . get (0)) . getType () ;

274 boolean f i rstArgumentTypeMatches = f i rs tArgumentType . i s P r i m i t i v e () &&

275 f i rs tArgumentType . getSimpleName () . equals (” i n t ”) ;

276

277 CtTypeReference secondArgumentType = ((CtParameter) parameterL is t . get (1)) . getType () ;

278 boolean secondArgumentTypeMatches = secondArgumentType . getSimpleName () . equals (” View ”) ;

279

280 CtTypeReference thirdArgumentType = ((CtParameter) parameterL is t . get (2)) . getType () ;

281 boolean thirdArgumentTypeMatches = thirdArgumentType . getSimpleName () . equals (” ViewGroup ”) ;

282

283 r e t u r n i s P u b l i c &&

284 nameMatch &&

285 returnTypeMatch &&

286 f i rstArgumentTypeMatches &&

287 secondArgumentTypeMatches &&

288 thirdArgumentTypeMatches ;

289 }

290

291 r e t u r n f a l s e ;

68

292 }

293 . . .

294 }

Listing A.6: The WakeLockRefactoringRule class
1 . . .

2 p u b l i c c lass WakeLockRefactoringRule extends AbstractProcessor<CtClass> implements Refactor ingRule<CtClass> {

3 . . .

4 p r i v a t e boolean methodSignatureMatches (CtMethod method) {

5 / / SIGNATURE:

6 / / p ro tec ted vo id onCreate (Bundle savedInstanceState)

7 boolean nameMatch = method . getSimpleName () . equals (” onCreate ”) ;

8 CtTypeReference type = method . getType () ;

9 boolean returnTypeMatch = type != n u l l && type . getSimpleName () . equals (” vo id ”) ;

10

11 boolean hasSameNumberOfArguments = method . getParameters () . s i ze () == 1;

12 i f (hasSameNumberOfArguments) {

13 L i s t parameterL is t = method . getParameters () ;

14

15 CtTypeReference f i rs tArgumentType = ((CtParameter) parameterL is t . get (0)) . getType () ;

16 boolean f i rstArgumentTypeMatches = f i rs tArgumentType . getSimpleName () . endsWith (” Bundle ”) ;

17

18 r e t u r n nameMatch &&

19 returnTypeMatch &&

20 f irstArgumentTypeMatches ;

21 }

22

23 r e t u r n f a l s e ;

24 }

25

26 @Override

27 p u b l i c vo id detectCase (Detect ionPhaseContext con tex t) {

28 WakeLockAcquired wakeLockAcquired = WakeLockAcquired . de tec t (con tex t) ;

29 i f (wakeLockAcquired != n u l l) {

30 contex t . c a s e O f I n t e r e s t L i s t . add (wakeLockAcquired) ;

31 }

32

33 Var iab leDeclared var iab leDec la red = Var iab leDec lared . de tec t (con tex t) ;

34 i f (va r iab leDec la red != n u l l) {

35 contex t . c a s e O f I n t e r e s t L i s t . add (var iab leDec la red) ;

36 }

37 }

38

39 @Override

40 p u b l i c vo id transformCase (TransformationPhaseContext con tex t) {

41 CaseTransformer . createPassThroughTransformation () . transformCase (con tex t) ;

42 }

43

44 @Override

45 p u b l i c vo id re factorCase (Refactor ingPhaseContext con tex t) {

46 i f (con tex t . caseOf In te res t i ns tanceo f WakeLockAcquired) {

47 WakeLockAcquired wakeLockAcquired = (WakeLockAcquired) con tex t . caseOf In te res t ;

48 Opt ional<Var iableDeclared> op t iona lVar iab leDec la red = contex t . casesOf In te res t . stream ()

49 . f i l t e r (Var iab leDec lared . c lass : : i s I ns tance)

50 .map(Var iab leDec lared . c lass : : cast)

51 . f i l t e r (va r iab leDec la red -> var iab leDec la red . v a r i a b l e . getSimpleName ()

52 . equals (wakeLockAcquired . v a r i a b l e . ge tVar iab le () . getSimpleName ())) . f i n d F i r s t () ;

53 i f (op t iona lVar iab leDec la red . i sPresen t ()) {

54

55 CtClass ctClass = Refactor ingRule . getClosestClassParent (con tex t . b lock) ;

56 i f (c tC lass == n u l l) {

57 r e t u r n ;

58 }

59 L i s t<CtFie ld<?>> f i e l d s = ctClass . ge tF ie l ds () ;

60 Opt ional<CtFie ld<?>> o p t i o n a l F i e l d = f i e l d s . stream () . f i l t e r (f i e l d -> f i e l d . getSimpleName ()

69

61 . equals (op t iona lVar iab leDec la red . get () . v a r i a b l e . getSimpleName ())) . f i n d F i r s t () ;

62 i f (o p t i o n a l F i e l d . i sPresen t () && ! o p t i o n a l F i e l d . get () . getType () . getSimpleName ()

63 . equals (op t iona lVar iab leDec la red . get () . v a r i a b l e . getType () . getSimpleName ())) {

64 / / I f types do not match we ignore f o r now .

65 r e t u r n ;

66 }

67 i f (! o p t i o n a l F i e l d . i sPresen t ()) {

68 CtTypeReference typeReference = op t iona lVar iab leDec la red . get () . v a r i a b l e . getType () ;

69 CtF ie ld f i e l d = ctClass . getFactory () . c rea teC tF ie ld (op t iona lVar iab leDec la red . get () . v a r i a b l e . getSimpleName () , typeReference ,

70 ” n u l l ” , Mod i f i e rK ind . PRIVATE) ;

71 ctClass . addFie ld (f i e l d) ;

72

73 Factory f a c t o r y = op t iona lVar iab leDec la red . get () . getStatement () . getFactory () ;

74 CtAssignment assignment = f a c t o r y . createAssignment () ;

75 assignment . setAssigned (f a c t o r y . createCodeSnippetExpression (op t iona lVar iab leDec la red . get () . v a r i a b l e . getSimpleName ())) ;

76 assignment . setAssignment (op t iona lVar iab leDec la red . get () . v a r i a b l e . ge tDefau l tExpress ion ()) ;

77 op t iona lVar iab leDec la red . get () . getStatement () . i n s e r tBe fo re (assignment) ;

78 contex t . b lock . removeStatement (op t i ona lVar iab leDec la red . get () . getStatement ()) ;

79 contex t . b lock . removeStatement (wakeLockAcquired . getStatement ()) ;

80 }

81

82 }

83

84 / / From here on we assume the v a r i a b l e i s i n the c lass as a f i e l d

85

86 CtClass ctClass = Refactor ingRule . getClosestClassParent (con tex t . b lock) ;

87 i f (c tC lass == n u l l) {

88 r e t u r n ;

89 }

90

91 Set<CtMethod<?>> methods = ctClass . getMethods () ;

92 boolean hasOnPause = f a l s e ;

93 boolean hasOnResume = f a l s e ;

94 boolean hasOnDestroy = f a l s e ;

95 S t r i n g variableName = wakeLockAcquired . v a r i a b l e . ge tVar iab le () . getSimpleName () ;

96 f o r (CtMethod<?> ctMethod : methods) {

97

98 i f (ctMethod . getParameters () . s i ze () != 0 || ! ctMethod . getType () . getSimpleName () . equals (” vo id ”)) {

99 cont inue ;

100 }

101

102 swi tch (ctMethod . getSimpleName ()) {

103 case ” onPause ” :

104 hasOnPause = t rue ;

105 boolean hasRelease = f a l s e ;

106 f o r (CtStatement statement : ctMethod . getBody () . getStatements ()) {

107 i f (statement ins tanceo f Ct Invoca t ion) {

108 Ct Invoca t ion invoca t i on = (Ct Invoca t ion) statement ;

109 CtExpression t a r g e t = invoca t i on . getTarget () ;

110 i f (t a r g e t . t o S t r i n g () . equals (variableName) &&

111 invoca t i on . getExecutable () . getSimpleName () . equals (” re lease ”)) {

112 hasRelease = t rue ;

113 break ;

114 }

115 }

116 }

117 i f (! hasRelease) {

118 ctMethod . getBody () . addStatement (ctMethod . getFactory ()

119 . createCodeSnippetStatement (variableName + ” . re lease () ”)) ;

120 }

121

122 break ;

123 case ”onResume” :

124 hasOnResume = t rue ;

125

126 boolean hasAcquire = f a l s e ;

127 f o r (CtStatement statement : ctMethod . getBody () . getStatements ()) {

128 i f (statement ins tanceo f Ct Invoca t ion) {

129 Ct Invoca t ion invoca t i on = (Ct Invoca t ion) statement ;

130 CtExpression t a r g e t = invoca t i on . getTarget () ;

70

131 i f (t a r g e t . t o S t r i n g () . equals (variableName) &&

132 invoca t i on . getExecutable () . getSimpleName () . equals (” acqu i re ”)) {

133 hasAcquire = t rue ;

134 break ;

135 }

136 }

137 }

138 i f (! hasAcquire) {

139 ctMethod . getBody () . addStatement (ctMethod . getFactory ()

140 . createCodeSnippetStatement (variableName + ” . acqu i re () ”)) ;

141 }

142

143 break ;

144

145 case ” onDestroy ” :

146 hasOnDestroy = t rue ;

147

148 boolean hasDestroy = f a l s e ;

149 f o r (CtStatement statement : ctMethod . getBody () . getStatements ()) {

150 i f (statement ins tanceo f Ct Invoca t ion) {

151 Ct Invoca t ion invoca t i on = (Ct Invoca t ion) statement ;

152 CtExpression t a r g e t = invoca t i on . getTarget () ;

153 i f (t a r g e t . t o S t r i n g () . equals (variableName) &&

154 invoca t i on . getExecutable () . getSimpleName () . equals (” re lease ”)) {

155 hasDestroy = t rue ;

156 break ;

157 }

158 }

159 }

160 i f (! hasDestroy) {

161 ctMethod . getBody () . addStatement (ctMethod . getFactory ()

162 . createCodeSnippetStatement (variableName + ” . re lease () ”)) ;

163 }

164

165 break ;

166 }

167 }

168

169 Factory f a c t o r y = ctClass . getFactory () ;

170

171 i f (! hasOnPause) {

172 CtMethod method = f a c t o r y . createMethod () ;

173 method . setType (f a c t o r y . Type () . vo idPr im i t i veType ()) ;

174 method . setSimpleName (” onPause ”) ;

175 CtAnnotat ion<Annotat ion> annota t ion = f a c t o r y . Code ()

176 . c rea teAnnota t ion (getFactory () . Code () . createCtTypeReference (Overr ide . c lass)) ;

177 method . addAnnotat ion (annota t ion) ;

178 method . setBody (f a c t o r y . c reateBlock ()) ;

179 method . getBody () . addStatement (f a c t o r y . createCodeSnippetStatement (” super . onPause () ”)) ;

180 method . getBody () . addStatement (f a c t o r y . createCodeSnippetStatement (variableName + ” . re lease () ”)) ;

181 ctClass . addMethod (method) ;

182 }

183

184 i f (! hasOnResume) {

185 CtMethod method = f a c t o r y . createMethod () ;

186 method . setType (f a c t o r y . Type () . vo idPr im i t i veType ()) ;

187 method . setSimpleName (”onResume”) ;

188 CtAnnotat ion<Annotat ion> annota t ion = f a c t o r y . Code ()

189 . c rea teAnnota t ion (getFactory () . Code () . createCtTypeReference (Overr ide . c lass)) ;

190 method . addAnnotat ion (annota t ion) ;

191 method . setBody (f a c t o r y . c reateBlock ()) ;

192 method . getBody () . addStatement (f a c t o r y . createCodeSnippetStatement (” super . onResume () ”)) ;

193 method . getBody () . addStatement (f a c t o r y . createCodeSnippetStatement (variableName + ” . acqu i re () ”)) ;

194 ctClass . addMethod (method) ;

195 }

196

197 i f (! hasOnDestroy) {

198 CtMethod method = f a c t o r y . createMethod () ;

199 method . setType (f a c t o r y . Type () . vo idPr im i t i veType ()) ;

200 CtAnnotat ion<Annotat ion> annota t ion = f a c t o r y . Code ()

71

201 . c rea teAnnota t ion (getFactory () . Code () . createCtTypeReference (Overr ide . c lass)) ;

202 method . addAnnotat ion (annota t ion) ;

203 method . setSimpleName (” onDestroy ”) ;

204 method . setBody (f a c t o r y . c reateBlock ()) ;

205 method . getBody () . addStatement (f a c t o r y . createCodeSnippetStatement (” super . onDestroy () ”)) ;

206 method . getBody () . addStatement (f a c t o r y . createCodeSnippetStatement (variableName + ” . re lease () ”)) ;

207 ctClass . addMethod (method) ;

208 }

209 }

210 }

211

212 p r i v a t e vo id r e f a c t o r (CtMethod method) {

213 i f (! methodSignatureMatches (method)) {

214 r e t u r n ;

215 }

216 L i s t<CtBlock> blocks = Refactor ingRule . ge tCtE lementsOf In teres t (method , CtBlock . c lass : : i s Ins tance , CtBlock . c lass) ;

217 f o r (CtBlock block : b locks) {

218 I t e r a b l e . i t e r a t e B l o c k (t h i s , logger , block , fa l se , 0) ;

219 }

220 }

221

222 p u b l i c vo id process (CtClass element) {

223 Set methods = element . getMethods () ;

224 f o r (Object method : methods) {

225 i f (method ins tanceo f CtMethod) {

226 r e f a c t o r ((CtMethod) method) ;

227 }

228 }

229 }

230 . . .

231 }

72

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Contributions
	1.4 Dissertation structure

	2 Related Work
	2.1 Energy Profiling
	2.2 Patterns
	2.3 Automated Refactoring
	2.4 Continuous Integration

	3 Architecture and implementation of LeafactorCI
	3.1 Overview
	3.2 Refactoring
	3.2.1 General requirements for the refactoring library
	3.2.2 Specific requirements for the refactoring library
	3.2.3 JavaParser
	3.2.4 Analysing the requirements
	3.2.5 Spoon
	3.2.6 Analysing the requirements

	3.3 Version Control
	3.4 Distribution and usage
	3.5 Continuous Integration
	3.6 Refactoring Rule
	3.6.1 RecycleRefactoringRule.java
	3.6.2 DrawAllocationRefactoringRule.java
	3.6.3 WakeLockRefactoringRule.java
	3.6.4 ViewHolderRefactoringRule.java
	3.6.5 Gradle Plugin

	3.7 Testing
	3.8 Continuous Integration

	4 Evaluation
	4.1 User study
	4.2 Can LeafactorCI be used inside a CI environment?
	4.3 How easy it is to adopt LeafactorCI?
	4.4 Performance

	5 Conclusion
	5.1 Motivation
	5.2 Contributions
	5.3 System Limitations and Future Work

	Bibliography
	Appendix A

	A Project Code

